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. A CRITICAL EVALUATION OF METHODS FOR CAXULATING 

TRANSPORT COEFFICIENTS OF PARTIALLY 

AND FULLY IONIZED GASES 

By Warren F. Ahtye 

Ames Research Center 
Moffett Field,  Calif. 

SUMMARY 

The bas ic  t ransport  coef f ic ien ts  of pa r t i a l ly  ionized argon’ have been 
calculated by the  rigorous second-order Chapman-Enskog formulation. Compari- 
sons w e r e  made between these values and the ones calculated by ex is t ing  meth- 
ods of less accuracy. 
f o r  t h e  second-order expression within a few percent.  However, values of t he  
second order expression f o r  the  t rans la t iona l  thermal conductivity and f o r  
ce r t a in  multicomponent diffusion coeff ic ients  a r e  la rger  by 25 t o  50 percent 
a t  la rge  degrees of ionization. 
e l e c t r i c a l  conductivity are smaller by an order of magnitude a t  small degrees 
of ionizat ion.  

The l a t t e r  values f o r  t he  v iscos i ty  agree with those 

Values of the second order expression f o r  t h e  

A comparison of the  e l e c t r i c a l  conductivity values calculated by the  
rigorous second-order Chapman-Enskog formulation with experimental values 
indicates  t h a t  t h i s  approach i s  va l id  f o r  calculating e l e c t r i c a l  conductivity 
and fu r the r  suggests t h a t  t he  same approach i s  reasonable f o r  calculat ing the  
t r ans l a t iona l  thermal conductivity. 

The ex is t ing  methods y i e ld  zero values f o r  the  thermal diffusion coef f i -  
The more exact theory used i n  the paper predicts  appreciable e f f e c t s  c ients .  

of thermal diffusion.  
the  various species indicate  t h a t  t he  diffusive motion of t h e  atom and ion are 
strongly coupled, and are almost independent of the d i f fus ive  motion of t he  
electron up t o  high degrees of ionization. 

Comparisons of  the  thermal diffusion coef f ic ien ts  f o r  

I 

The ex is t ing  method f o r  predict ing the  reac t ive  and thermal diffusive 
components of the  thermal conductivity i s  inexact i n  many areas, the  main 
defect being the  neglect of the  charge separation f i e l d .  
t i o n  of t he  problem indicates  t ha t  these two components would not be  a con- 
s t an t  f o r  a specif ied temperature, but would vary i n  the  d i rec t ion  of the  
temperature gradient,  thereby increasing the complexity of the  solut ion.  
Un t i l  the  d i f f i c u l t y  i s  resolved, accurate predictions of  t he  las t  two compo- 
nents of t he  thermal conductivity f o r  a pas t i a l ly  ionized gas w i l l  not be 
possible.  

A cursory examina- 

J The second-order values of the  e l ec t r i ca l  conductivity and t r ans l a t iona l  
thermal conductivity f o r  f u l l y  ionized argon are compared with those calcu- 
l a t ed  by the simultaneous co l l i s ion  approach of Spi tzer .  The Spi tzer  approach 
y ie lds  thermal conductivity values which are la rger  by a f ac to r  of t 
t o  i t s  neglect of ion-ion in te rac t ions .  



INTRODUCTION 

An object t ravel ing through an atmospheric medium a t  low speeds has 
almost none of i t s  k ine t i c  energy converted in to  in t e rna l  exc i ta t ion  of the 
surrounding gas molecules. A s  the  speed i s  increased, t he  molecules undergo 
ro ta t iona l  and v ibra t iona l  exci ta t ions,  along with e lec t ronic  exc i ta t ion ,  then 
dissociation, and f i n a l l y  various stages of ionizat ion.  Existing methods 
(refs.  1 t o  6 )  f o r  calculat ing t ransport  propert ies  of gases a t  increasingly 
higher temperatures have undergone an analogous evolution. The bas i s  f o r  the  
calculation of t ransport  propert ies  i s  the  Chapman-Enskog approach which was 
derived for a nonreactive mixture of  monatomic gases ( i . e . ,  no in t e rna l  exci-  
t a t i o n )  at r e l a t i v e l y  l o w  temperatures ( r e f s .  7 and 8 ) .  
foresight  was used i n  the  complete formulation of the  problem, f o r  there  e x i s t  
terms which become appreciable only f o r  reac t ive  and/or ionized gases. Unfor- 
tunately, order of magnitude examinations of these terms f o r  the  case of mon- 
atomic gases near room temperature resu l ted  i n  many approximations which have 
been retained f o r  dissociat ing and ionizing gases.  For polyatomic molecules 
the  thermal conductivity was modified by the  Eucken correction ( r e f .  8) t o  
account f o r  the  energy exchange between the  t r ans l a t iona l  and in t e rna l  (i. e . ,  
v ibrat ional  and ro ta t iona l )  modes. A t  higher temperatures, dissociat ion of 
t he  polyatomic molecules becomes a predominant e f f ec t .  But ler  and Brokaw 
( r e f .  9 )  re-examined the Chapman-Enskog formulation f o r  a dissociat ing gas, 
and concluded t h a t  the react ion energy must be added t o  the  energy diffusion 
t e r m .  Consequently, they derived a simple expression t o  account f o r  t h i s  
reaction energy i n  the  thermal conductivity. The ex is t ing  methods i n  r e f e r -  
ences 1 through 6 f o r  calculat ing t ransport  propert ies  of  a p a r t i a l l y  ionized 
gas contain nothing conceptually d i f f e ren t .  For example, the  Butler and 
Brokaw expression f o r  the react ive thermal conductivity w a s  re ta ined,  with the  
ionization po ten t i a l  used i n  place of t he  dissociat ion energy. 

A great  amount of 

To assess the v a l i d i t y  of these approximate methods, the experimental and 
theore t ica l  thermal conductivity of nitrogen are  compared in  f igure  1. 
experimental data were obtained f rom measurements i n  a cy l ind r i ca l  cascade arc  
by Maecker ( re f .  10); t he  experiment was performed a t  atmospheric pressure f o r  
temperatures ranging as high as 15,000° K (corresponding t o  50-percent ioniza- 
t i o n ) .  A wide range of arc  currents w a s  a lso used. 
were calculated by the  ex is t ing  methods and a re  based on what i s  believed t o  
be the most accurate intermolecular po ten t i a l  data. 
charge-exchange cross section, recent ly  calculated by -of, Mason, and 
Vanderslice ( re f .  ll), i s  used. The a rc  data  show f a i r l y  good agreement i n  the  
region o f  dissociat ion.  This i s  substant ia ted by the  shock tube experiments 
described i n  references 4 and 12, where heat  t r ans fe r  w a s  measured w i t h  a t h i n  
f i l m  gage. A t  the  point where ionizat ion i s  i n i t i a t e d ,  the  experimental a rc  
values increase more rapidly than the  predicted values and show no signs of 
peaking as predicted by the  theory. A t  the  highest temperature a t ta ined  the 
experimental values are  higher by almost an order of  magnitude. However, it 
should b e  pointed out t h a t  there  may be e i t h e r  an experimentally induced e r ro r  
or anunpredicted phenomenon, f o r  t he  experimental values of the  t o t a l  thermal 
conductivity a t  a given temperature increase as the arc  current i s  increased. 

The 

The theo re t i ca l  values 

For example, the  N+-N 
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Cohsequently, t h e  comparison i n  f igu re  1 should be considered as only a rough 
indicat ion of t h e  accuracy o f  the  approximate nethods f o r  calculat ing 
t ransport  coef f ic ien ts .  

These comparisons indicate  tha t  the  assumptions and approximations being 
used f o r  most calculat ions should be re-evaluated f o r  p a r t i a l l y  and f u l l y  
ionized gases. A discrepancy may be a t t r ibu ted  t o  the following differences 
i n  the  system: (1) The magnitude and range of intermclecular forces  between 
charged p a r t i c l e s  are  orders of magnitude greater than those between neut ra l  
pa r t i c l e s ;  and (2)  a much greater  mass dispar i ty  e x i s t s  f o r  the  in te rac t ing  
species due t o  t he  presence of f r e e  electrons.  The r e s u l t s  of  figure 1 also 
point out the  need f o r  more accurate experimental data in  the  region of  50- 
percent ionizat ion (15,000° K )  where a peak i s  predicted,  and i n  regions of 
even higher degrees of ionization where such ef fec ts  as thermal diffusion of 
e lectrons may become important. Development of  a cascade arc  producing much 
higher temperatures does n o t  appear too promising ( r e f .  13) .  However, arc- 
driven shock tubes operating a t  much lower pressures a re  capable of producing 
moch higher temperatures and degrees o f  ionization ( r e f .  1 4 ) .  

The primary purpose of t h i s  paper i s  t o  determine whether the  t ransport  
coef f ic ien ts  of  p a r t i a l l y  and f u l l y  ionized gas can be more accurately deter-  
mined by the  second-order Chapman-Enskcg formulation. The approach used i s  t o  
start from t h e  basic  equation, the  Boltzmann eq-uation, and obtain as accurate 
a calculat ion of t ransport  coeff ic ients  as possible. These values are then 
compared with those calculated by exis t ing methods, i n  order t o  point out t he  
magnitude of t he  e r rors  incurred by the  use of these methods. Numerical val- 
ues are obtained by using the  atomic properties of argon. The choice of argon 
i s  based on the  a v a i l a b i l i t y  of intermolecular po ten t ia l s  and the  r e l a t i v e  
ease required f o r  the  calculat ion of i t s  transport  coeff ic ients .  For the 
t ransport  coef f ic ien ts  where the  quant i ta t ive theory i s  s t i l l  wanting, a qual- 
i t a t i v e  discussion w i l l  be made. 

Equilibrium thermodynamic propert ies  a re  e s sen t i a l  ingredients i n  any 
experimental o r  t heo re t i ca l  invest igat ion of transport  coef f ic ien ts .  The ca l -  
culat ion of t he  thermodynamic propert ies  o f  p a r t i a l l y  ionized argon i s  b r i e f l y  
described i n  appendix A. 
pated shock-tube determination of  t he  transport  propert ies  of p a r t i a l l y  
ionized argon. 
appendix B. 

Shock-wave properties can be usef’ul f o r  any a n t i c i -  

The calculat ion of these properties i s  b r i e f l y  described i n  

SYMBOLS 

a speed of sound a t  zero frequency 

ai ,  b i ,  . . . stoichiometric coef f ic ien ts  for components Ai, Bi, . . . 
A argon atom 

A+ argon ion  
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impact parameter 

spec i f ic  heat per  mol a t  constant pressure 

spec i f ic  heat per mol a t  constant densi ty  

mlticomponent d i f fus ion  coe f f i c i en t  

ambipolar diffusion coe f f i c i en t  

coef f ic ien t  of thermal d i f fus ion  

coef f ic ien t  of d i f fus ion  f o r  binary mixture 

base of na tu ra l  logarithms, a l so  e lec t ron  charge 

electron 

energy per mol 

f i r s t  ionizat ion po ten t i a l  

charge separation f i e l d  

ve loc i ty  d i s t r ibu t ion  funct ion f o r  s ing le  p a r t i c l e  

Maxwellian ve loc i ty  d i s t r ibu t ion  function 

degeneracy o f  i t h  state 

i n i t i a l  r e l a t i v e  speed i n  b inary  system 

Planck's constant,  a l so  Debye shielding length 

enthalpy per  u n i t  mass 

enthalpy per  mol 

element of v i scos i ty  determinant 

ion 

current  densi ty  

Boltzmann' s constant 

chemical equilibrium constant f o r  pressure u n i t s  

mean f r e e  path 
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m i  

M 

M i  

n 

P i  

P. -1 

Q 
-Inn' 
Q i j  

QP 

r 

R 

S 

S i o  

T 

U 

es 

mass of p a r t i c l e  

Mach number 

molecular weight per mol 

e lectron quantum number, also concentration i n  p a r t i c l e s  per u n i t  
volume 

p r  e s sur  e 

reference pressure, 1 a t m  

p a r t i a l  pressure 

momentum f l u x  vector 

energy f l u x  vector 

element of thermal conductivity determinant 

t o t a l  p a r t i t i o n  function 

element of thermal diffusion determinant 

t o t a l  p a r t i t i o n  function for a standard s t a t e  of u n i t  pressure,  pQ 

distance between p a r t i c l e s  

un iversa l  gas constant, energy per  mol per deg 

entropy per mol 

entropy per mol of component i a t  1 atm pressure 

absolute temperature 

veloci ty  with reference t o  incident shock wave 

u n i t  tensor 

molecular ve loc i ty  

volume 

diffusion ve loc i ty  

ve loc i ty  with reference t o  ref lected shock wave 

reduced ve loc i ty  
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A 

Ad 

A r  

A t  

c1 

p i  j 

V 

V C  

n 
B 

Is 

O i  j 

cp 

x 
(2,s) 

'i j 

mol f r a c t i o n  

t o t a l  fo rce  

compres s i b i l i t y  

r a t i o  of spec i f i c  heats ,  

reduced i n i t i a l  r e l a t i v e  speed of co l l id ing  p a r t i c l e s  i n  binary 

cP 

system 

f r a c t i o n  of atoms which have become ionized, a l so  constant i n  
Lennard-Jones po ten t i a l  

energy of t he  i t h  s ta te  

coef f ic ien t  of v i scos i ty  

t o t a l  coef f ic ien t  of thermal conductivity 

coef f ic ien t  of thermal conductivity due t o  thermal d i f fus ive  
e f f e c t  

coef f ic ien t  of thermal conductivity due t o  chemical reac t ion  

coef f ic ien t  of thermal conductivity due t o  atomic c o l l i s i o n  

mob i 1 it y 

reduced mass for binary system 

number of species 

c o l l i s i o n  frequency 

consecutive product 

densi ty  

e l e c t r i c a l  conductivity 

c o l l i s i o n  diameter 

intermolecular po ten t i a l  

def lec t ion  angle 

co l l i s ion  i n t e g r a l  of order 2, s 
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diffusion cross sect ion 

v iscos i ty  cross sect ion 

Subscripts 

A atom 

e electron 

i j  binary in te rac t ion  between pa r t i c l e s  i and j 

i , j , .  . . p a r t i c l e s  of type i, j ,  . . . 
I ion 

m degree of Sonine polynomial 

P constant pressure process 

P constant densi ty  process 

1 argon atom a lso  i n i t i a l  conditions i n  gas medium 

2 argon ion a l so  conditions behind incident  shock wave 

3 electron a l so  conditions behind r e f l ec t ed  shock wave 

CAUULATION O F  SECOND-ORDER BASIC TRAMSPORT COEFFICIENTS 

Physical Model 

Argon i s  a monatomic gas whose thermodynamic and t ranspor t  propert ies  are 
e s sen t i a l ly  determined by the  e f f e c t s  of i t s  18 o r b i t a l  e lectrons,  exclusive 
of mass e f f e c t s .  

described i n  t h i s  paper, it w i l l  be assumed that only s ingle  ionizat ion occurs. 
A general  study of argon plasma w a s  made i n  reference 15, where it w a s  assumed 
t h a t  a l l  degrees of ionizat ion can occur simultaneously. The analysis  showed 
that s ing le  ionizat ion i s  e s sen t i a l ly  completed before double ionizat ion 
becomes appreciable. A s  a r e s u l t ,  the  use of t he  thermodynamic and t ranspor t  
p roper t ies  i n  t h i s  paper should be l imited,  f o r  a given pressure,  t o  the  tem- 
perature  a t  which argon approaches the f i l l y  ionized s t a t e  ( Z  5 2.00). 

I n  pr inc ip le ,  exc i ta t ion  of any degree of ionizat ion of 
' these electrons can occur. For t he  range of temperatures and pressures 

The i d e a l  gas law 

pV = NRT = [N(e-) + N(A) + N(A+)]RT (1) 
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i s  used, where N, the  number of mols, i s  a function of the  addi t ional  p a r t i c l e s  
produced by the  s ingle  ionization. 
spend the grea tes t  pa r t  of t h e i r  time i n  f i e ld - f r ee  space, but  t h a t  shor t -  
range interactions can occur. 
Coulomb forces.  
t ions  are believed t o  be r e l a t i v e l y  Small (see appendix A ) ,  and i t s  use 
grea t ly  s implif ies  the calculat ions.  

Equation (1) implies t h a t  the  p a r t i c l e s  

This assumption i s  violated by the  existence of 
However, equation (1) i s  used throughout because the  correc- 

Outline of Derivation of Transport Coefficients 

The Boltzmann in tegro-d i f fe ren t ia l  equation i s  assumed t o  be the  basis 
f o r  calculating t ransport  coef f ic ien ts  of a p a r t i a l l y  ionized gas.  This equa- 
t i o n  specif ies  f i ,  the d is t r ibu t ion  f'unction f o r  a s ing le  p a r t i c l e  of species 
i. The assumption of t he  s ingle  p a r t i c l e  d i s t r ibu t ion  function implies t h a t  
only binary co l l i s ions  a re  considered. This assumption r e s t r i c t s  t he  theory 
t o  low-density gases and a l so  imposes a r e s t r i c t i o n  t h a t  the  range of  i n t e r -  
molecular forces  must be smaller than the  in t e rpa r t i c l e  spacing. 

For equilibrium s i tua t ions  the  d i s t r ibu t ion  function i s  given by t h e  
w e l l  -known Maxwell -Bolt zmann d i s t r ibu t ion  

Any deviation from equilibrium ( i . e . ,  t he  d i s t r ibu t ion  of eq. ( 2 ) )  results i n  
transport  phenomena. 
as 

The Boltzmann equation i n  i t s  most general form i s  given 

The quantity Xi, t he  t o t a l  force  act ing on the  pa r t i c l e ,  includes any macro- 
scopic force f i e l d s  stemming from the  p a r t i c l e s  i n  the  system. One example 
of the  l a t t e r  i s  t he  electromagnetic forces  due t o  a charge separation f i e l d .  
This f i e ld ,  i n  turn,  i s  a t t r i bu ted  t o  the  difference i n  the  ion and electron 

concentration gradients .  The quant i t ies  r i j  (+) and r;j a re  the  r a t e s  a t  
which pa r t i c l e s  a re  added and removed by binary co l l i s ions  from u n i t  volume 
of phase space. These terms account f o r  both e l a s t i c  and i n e l a s t i c  co l l i s ions .  
Furthermore, the t o t a l  macroscopic force i s  assumed t o  be much smaller than 
the intermolecular f o r c e s . .  A s  a r e s u l t  of t h i s  last  assumption, charge separ- 
a t ion  e f fec ts  do not en ter  in to  the  expressions f o r  the  basic  t ransport  coef- 
f i c i en t s  ( i . e . ,  those prescribed only by co l l i s iona l  processes) such as the  
viscosity,  t r ans l a t iona l  thermal conductivity, multicomponent diffusion coef- 
f i c i en t s ,  thermal diffusion coeff ic ients ,  and the  e l e c t r i c a l  conductivity. 
However, charge separation e f f ec t s  should a f f ec t  macroscopic quant i t ies  such 
as  the  concentration gradients of the  ions and electrons.  

a 



c 
A t  t h i s  point two important simplifications a re  made. F i r s t ,  it i s  

assumed t h a t  a l l  co l l i s ions  a re  e l a s t i c  ( i . e .  , no in t e rna l  exci ta t ions o r  
chemical reac t ions) .  The r e su l t i ng  expression f o r  the Boltzmann equation i s  

where the  primes denote quant i t ies  a f t e r  a col l is ion.  The approximate solu- 
t i o n  of t h i s  equation is  vas t ly  s implif ied if the force  t e r m  is  asswned t o  
arise from an ex terna l  source only, and is a given function of space and time. 

The next s t ep  i s  t o  expand the d is t r ibu t ion  function i n  a perturbation 
s e r i e s  about the  Maxwell-Boltzmann dis t r ibut ion,  foi. 
as 

The expansion i s  given 

f i  = f o . ( l  + cp + . . .) (5)  1 

It can be seen from equation (2) t h a t  the f i r s t  term i n  equation (5)  i s  pro- 
por t iona l  t o  n l .  
term, fo.cp, i s  proportional t o  
Since we a re  dealing with number dens i t ies  of the  order of 1015 t o  lo2' par- 
t i c l e s  per  cm3, then two terms should be suf f ic ien t  t o  describe the  nonequi- 
l ibrium d i s t r ibu t ion .  This form i s  subst i tuted back in to  the  Boltzmann 
equation (eq. ( 4 ) ) .  
turbat ion funct ion cp i s  l i n e a r  i n  the  derivatives aT/a_r, t he  temperature 
gradient,  axi/ag, the  concentration gradient,  and 
mass average veloci ty .  The l i n e a r i t y  implies t h a t  these gradients be small 
over a dis tance of one mean free path. 

Chapman and Cowling (ref. 7) have shown t h a t  t he  second 
no, and any t h i rd  term i s  proportional t o  n-l. 

1 

One of the r e s u l t s  of  t h i s  subs t i tu t ion  i s  that the  per-  

ay/a_r, the  gradient of t he  

For example, 

-- I aT << 1 
T ax 

must be s a t i s f i e d  f o r  the  thermal conductivity t o  have any meaning, where 2 
is  the  mean f r e e  path. 

The s teps  leading from the  Boltzmann equation to the  f i n a l  expressions 
f o r  the  t ranspor t  coef f ic ien ts  a re  qui te  complex. The main s teps  can be found 
i n  reference 8. The r e s u l t  i s  t h a t  the perturbation function, cp, i s  expressed 
as a sum of in t eg ra l s ,  where the  integrands contain i n f i n i t e  s e r i e s  of Sonine 
polynomials. The mth Sonine polynomial of order n i s  defined as 

where j i s  a dummy index, and the  variable x i s  the square of a reduced 
p a r t i c l e  veloci ty ,  yi2, defined as  

9 



The f i r s t  two Sonine polynomials a re  

(0) sn (x)  = 1 

The transport  coef f ic ien ts  a re  then obtained when the d i s t r ibu t ion  function, 
which i s  now expressed i n  terms of i n f i n i t e  s e r i e s  of Sonine polynomials, i s  
substi tuted into the  expressions f o r  the f lux  vectors and the diffusion 
vectors. These expressions are:  

Transport of momentum Pxi = m i  J V x1-1 . V . f *  1 dxi (10) 

(11) 
2 1 

q.  = - m i  J v i  V_,fi dvi -1 2 Transport of  k ine t ic  energy 

Diffusion veloci ty  

There are a lso f lux  vectors t h a t  correspond t o  equation (lo), t ransport  of 
momentum i n  the  y and z direct ions.  The nine components of  the  three momen- 
tum flux vectors f o r m  the p a r t i a l  pressure tensor of the i t h  species.  The 
swn of these tensors over a l l  species gives the  pressure tensor f o r  the  m u l t i -  
component mixture. Similarly,  the sum of t he  heat f l u x  vector (eq.  (11)) over 
a l l  species, gives the  heat f l u x  vector f o r  the multicomponent mixture. 

The in t eg ra l  i n  equation (12) and the  sum of the in tegra ls  over species 
of equations (10) and (11) can be regrouped in  the  fami l ia r  bas ic  t ransport  
coeff ic ients .  For example, a component of the  pressure tensor of the mixture 

i s  expressed as a product of the  viscosi ty ,  7 ,  and the  r a t e  of shear tensor,  
$. The diffusion veloci ty  vector f o r  species i 

i s  expressed i n  terms of  the  multicomponent diffusion coef f ic ien ts ,  D i j ,  the  
thermal diffusion coeff ic ients ,  DT, and a macroscopic gradient vector defined 
as  

I n  the l a s t  term i n  equation (l5), the  summation over species j includes 
the  i t h  species.  The coef f ic ien ts  D i j  and D i  T a re  analogous quant i t ies  

10 



'L . 
8escribing the  r e l a t i v e  t ransfer  of the different species i n  a multicomponent 
gas. The main difference i s  tha t  the  driving po ten t i a l  f o r  D i j  i s  the con- 
centrat ion gradient,  and t h e  driving potent ia l  f o r  
gradient.  

DT i s  the  temperature 

The expression f o r  t he  heat f l u x  vector of a mlticomponent mixture 

can be expressed as the  sum of three components. I n  turn,  each of  these com- 
ponents can be expressed as the product o f  an e f fec t ive  thermal conductivity 
and the  temperature gradient.  The f i r s t  component contains the  t r ans l a t iona l  
thermal conductivity, A t ,  and i s  the  only component explained by simple 
k ine t i c  theory (ref.  8 ) .  The second component contains the  reac t ive  thermal 
conductivity, A r ,  and derives i t s  name because of the addition of t he  reaction 
energy t o  the  enthalpy ( ref .  9 ) .  
i n  terms of a diffusion cycle. I n  the  higher temperature region, an atom i s  
ionized, thereby gaining the  energy of ionization. Since the  derivative of 
ion concentration with temperature i s  posit ive,  t h e  ions d i f fuse  toward the 
lower  temperature region. I n  t h i s  region, the ion recombines with an elec-  
tron, thereby releasing the  energy of ionization (i. e .  , t ransport  of energy) . 
The cycle i s  completed when the  atom i s  forced by the  atomic concentration gra- 
dient  t o  diffuse toward the higher temperature region where the  ionization 
process i s  repeated. For obvious reasons, the t h i r d  component of the  thermal 
conductivity, Ad, i s  ca l led  the thermal diffusive component. Unfortunately, 
no simple physical p ic ture  can describe this  mode of heat t ransport .  

This mode of  heat t r ans fe r  can be described 

There are some fundamental differences between the  f i r s t  component and 
the  l a s t  t w o  components, A r  and Ad. Translational thermal conductivity i s  a 
phenomenon which occurs f o r  both a pure gas  and a multicomponent mixture. The 
las t  two components of thermal conductivity are observed only f o r  a multicom- 
ponent mixture. Another d i s t inc t ion  i s  tha t  the  t r ans l a t iona l  thermal con- 
duc t iv i ty  i s  completely described by binary co l l i s ion  e f f ec t s  ( i . e . ,  i s  a 
basic  t ranspor t  coeff ic ient)  whereas the  reactive and thermal diffusive com- 
ponents of t he  thermal conductivity depend on the  macroscopic quantity 
as w e l l .  

axi& 

I n f i n i t e  s e r i e s  of Sonine polynomials are used i n  evaluating the  basic  
t ransport  coef f ic ien ts  f o r  a multicomponent mixture, such as the  components of 
t he  viscosi ty ,  qi, t he  t r ans l a t iona l  thermal conductivity, A t ,  t he  multicom- 
ponent diffusion coeff ic ients ,  D i j ,  and the  thermal diffusion coeff ic ients ,  
DT; hence these coef f ic ien ts  are  a l l  expressed in  t e r m s  of  r a t i o s  of i n f i n i t e  
determinants. Since t h e  convergence of these r a t i o s  i s  fa i r ly  rapid, it i s  
necessary t o  consider only the  first f e w  Sonine polynomials. The expressions 
"first -order approximation" and "second-order approximat.ion" stem from the 
f a c t  t h a t  e i t h e r  the  f i r s t  one (eq. (9a))  o r  the f i r s t  two (eqs.  (9a) and 
(9b))  i n  the  s e r i e s  of Sonine polynomials have been used. 
sions w i l l  be used qui te  extensively i n  the following sect ion.  

These two expres- 
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A t  a point i n  the  der ivat ion of the  basic  t ransport  coef f ic ien ts ,  
Chapman and Cowling ( r e f .  7)  expressed the  in tegra ls  containing Sonine poly- 
nomials as a l inea r  combination of the co l l i s ion  in t eg ra l s  

where y i j  
between p a r t i c l e s  i and j with reduced mass p i j .  The re la t ionship  between 
these quant i t ies  i s  

i s  the  dimensionless form of t he  i n i t i a l  r e l a t i v e  speed, vij, 

The other var iables  i n  equation (17) a re  
t h e  angle  i n  the  center of mass coordinate system between the  r e l a t i v e  veloc- 
i t y  vectors before and a f t e r  co l l i s ion .  Since the quantity X i s  an e x p l i c i t  
expression of the  type of intermolecular force  involved ( ref .  8), it i s  obvi- 
ous that  t he  co l l i s ion  in tegra ls  are a l so  expressions of t he  intermolecular 
force  e f fec ts  i n  the  Chapman-Enskog formulation. 

b, t he  impact parameter, and X, 

I n t e rpa r t i c l e  Poten t ia l s  

This section w i l l  describe the  source of the  various poten t ia l s  used i n  
this  calculation. The t ransport  coef f ic ien ts  of argon can be calculated with 
a greater degree of confidence than most gases because of the  a v a i l a b i l i t y  of 
molecular beam sca t te r ing  data  f o r  a l l  high-temperature interact ions,  with the  
exception of those between two charged p a r t i c l e s .  These experimental s ca t t e r -  
ing cross sections, i n  turn,  a re  converted t o  i n t e r p a r t i c l e  po ten t ia l s ,  cp(r). 
It should be  emphasized t h a t  these poten t ia l s  cannot be a r b i t r a r i l y  used at a l l  
temperatures of i n t e r e s t .  The c r i t e r i o n  proposed by Amdur ( ref .  16) f o r  non- 
Coulombic interact ions,  i s  t h a t  the  range of va l id i ty  of temperatures i s  
determined by the  range of t h e  po ten t i a l  energy corresponding t o  the  measured 
scat ter ing.  The expression r e l a t ing  the  po ten t i a l  energy and temperature i s  

cp(r) = kT (19) 

I n  f a c t ,  the  v a l i d i t y  of equation (19) can be determined i n  the  following 
manner. 
quantity r = O i j ,  t he  equivalent hard sphere diameter. The quant i ty  O i j  
then w i l l  be used i n  the  simple k ine t i c  theory f o r  hard sphere molecules t o  
obtain approximate values of t he  v iscos i ty  and the  t r ans l a t iona l  thermal con- 
duct ivi ty .  Comparison of  these approximate values with the  corresponding 
quant i t ies  calculated by the  Chapman-Enskog formulation w i l l  determine t h e  
regime of  va l id i ty  of equation (19). 
quent section of  t h i s  paper. 

thermal diffusion and chemical react ion.  

For a given po ten t i a l  cp = cp(r), equation (19) can be solved f o r  the  

1 

This approach i s  discussed i n  a subse- 

’This approximation does not account f o r  the  thermal conductivity due t o  
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A t  temperatures below 2000' K,  t he  only species present i s  neut ra l  argon. 
The molecular beam apparatus cannot supply a beam of neut ra l  argon with s u f f i -  
c ien t -  veloci ty  resolut ion a t  beam veloci t ies  corresponding t o  t h i s  lower range 
of  temperatures. For t h i s  reason the Lennard-Jones po ten t i a l  

i s  used f o r  atom-atom col l i s ions  where the  constants, E/k = 124.0' K and 
cr = 3.418 A ,  were determined from viscosi ty  measurements ranging from 80' K t o  
1500' K (ref.  8 ) .  The co l l i s ion  in t eg ra l  corresponding t o  t h i s  f o r m  of the  
po ten t i a l  i s  derived i n  reference 8, and the r e s u l t  i s  show. i n  f igure  2 (a ) .  
For a pure substance the  coef f ic ien ts  of viscosity and thermal conductivity 
a re  given i n  reference 8 as 

where cv i s  the  spec i f ic  heat a t  constant density f o r  a s ingle  p a r t i c l e .  

A t  temperatures between 1,500°and 5,000' K equilibrium argon has not 
undergone appreciable ionization, so  t h a t  the t ransport  coef f ic ien ts  can s t i l l  
be specif ied by equations (21) and (22) .  
t u re  range, the  atom-atom po ten t i a l  i s  taken from the  r e s u l t s  of  a molecular 
beam experiment by Amdur and Mason ( r e f .  17) .  

For the  upper pa r t  of t h i s  tempera- 

This po ten t i a l  i s  given as  

-76 -8.33 
ql1(r) = 3.120~10 r 

where cp(r) i s  the po ten t i a l  energy i n  ergs and r i s  the  in t e rpa r t i c l e  d i s -  
tance i n  centimeters. The range of r extended f r o m  2.18 t o  2.69 A ,  which 
corresponds t o  a temperature range of  21,400° t o  2 ,600~  K according t o  the  
c r i t e r i o n  of equation (19). 
inverse-power repulsive poten t ia l .  
l i s i o n  in t eg ra l  i s  described i n  reference 18, and the  r e s u l t s  o f  t h i s  calcula- 
t i on  are shown i n  f igure  2 ( a ) .  
1,500' and 2 , 6 0 0 ~  K .  

value of R!:'2) which w a s  used. 

The form of equation (23) i s  the  well-known 
The calculation of the  corresponding col-  

A gap i n  the po ten t i a l  data  exists between 
The dotted l i n e  in  figure 2(a) shows the  interpolated 

For temperatures higher than 5000' K ionization e f f ec t s  become important. 
The following co l l i s ions  must be accounted for: 
ion-ion (22),  electron-electron (33),  atom-ion (12),  atom-electron ( l 3 ) ,  and 
ion-electron (23) .  

atom-atom (subscr ipt  11) , 
I n  addition t o  the  "viscosity" type of co l l i s ion  in t eg ra l s  



of order ( 2 , s )  equal t o  (2,2),  as defined by equation (171, the  Chapman-Enskog 

formulation requires the  "diffusion" type of co l l i s ion  in tegra ls ,  0 
order ( 2 ,  s )  equal t o  (l,l), (1 ,2) ,  and (1,3).  

The co l l i s ion  in tegra ls  corresponding t o  the  po ten t i a l  of  equation (23) 

The extrapolation can be j u s t i f i e d  because the  
a re  used f o r  temperatures up t o  30,000° K although the  range of t h e  data 
extends only t o  21,400' K. 
amount of atomic argon i n  t h i s  region approaches zero f o r  pressures as high 
as 100 atmospheres. 

Two mechanisms are possible f o r  atom-ion in te rac t ions .  These a re  e l a s t i c  
scat ter ing and charge exchange. Mason, Vanderslice, and Yos pointed out i n  
reference 19 t h a t  "diffusion" type co l l i s ion  in tegra ls  (e .g . ,  R,, (4 , R,, ( 1 2 2 )  , 
and f o r  high-temperature gases are governed by the  charge exchange 
mechanism. They a l so  showed tha t  t he  charge exchange e f f ec t s  cancelled out 
f o r  the  "viscosity" type co l l i s ion  i n t e g r a l  0iz.". This predominance of 
charge exchange seems t o  be substantiated by the  experimental data  of r e fe r -  
ence 20 where the  charge-exchange cross section i s  la rger  than the  e l a s t i c  
cross  section. Consequently, the  "diffusion" type co l l i s ion  in t eg ra l s  

R!:"), 0ii'2), and Qi:'3) a re  derived from charge-exchange cross sections,  

while the "viscosity" type co l l i s ion  in t eg ra l  Qiz92) i s  computed on the  bas i s  
of e l a s t i c  co l l i s ions .  

The atom-ion po ten t i a l  f o r  e l a s t i c  sca t te r ing  i s  based on the  r e s u l t s  of 
reference 21 and i s  given as 

(pl2(r) = 8 . 5 4 9 x ~ I - ~ e x p (  - r / i . g 6 8 ~ i O - ~ )  (24) 

where cp,,(r) i s  the  po ten t i a l  i n  ergs and r the  in t e rpa r t i c l e  distance i n  
centimeters. The range of r extended from 2.47 t o  3.39 A,  which corresponds 
t o  a temperature range of  213,000° t o  2,000' K. The calculat ion of t he  cor- 
responding co l l i s ion  i n t e g r a l  i s  described i n  reference 22, and the  r e s u l t s  
of t h i s  calculat ion are shown i n  f igure  2 ( b ) .  

The charge-exchange co l l i s ion  in tegra ls  a re  based on the  experimental 
charge cross sect ions given by Cloney, Mason, and Vanderslice i n  reference 21. 
In  t h i s  pa r t i cu la r  instance the  co l l i s ion  in t eg ra l  can be expressed d i r ec t ly  
i n  terms of cross-section data as a r e s u l t  of  the  following conclusion reached 
by Mason, Vanderslice, and Yos i n  reference 19. The "diffusion" cross  section, 

approaches a value of twice the charge-exchange cross  sect ion a t  high tempera- 
t u re s .  For cross-section data t h a t  can be f i t t e d  t o  an expression of the  form 

Q12 = ( A  - B log,, v)' (26) 
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'where Q12 i s  the charge-exchange cross section (cm2) f o r  a veloci ty  v 
(cm/sec), t he  r e l a t i o n  between the co l l i s ion  in t eg ra l s  and the constants 
andB i s  

These expressions were derived by D r .  Gerrold Yos of the  Avco Corporation, but  
have not been published. 
B = 1.660~10-~ cm were obtained from reference 21. 
the  "diffusion" in t eg ra l s  a re  shown i n  f igure 2(b). 

For argon the constants A = 1.564~10-~ cm and 
The resu l t ing  values of 

The in te rac t ion  between a f r e e  electron and a neu t r a l  atom can be 
described approximately as the sum of three e f f ec t s .  
e l e c t r o s t a t i c  in te rac t ion  of the  f r e e  electron with the nucleus and the unper- 
turbed charge d i s t r ibu t ion  of the  o r b i t a l  electrons act ing as a whole. 
approximate o r b i t a l  e lec t ron  charge d is t r ibu t ion  obtained by Hartree ( r e f .  23) 
i s  used i n  t h i s  paper. 
displacement, of each o r b i t a l  e lectron w i t h  respect t o  the nucleus, due t o  
the e l e c t r o s t a t i c  force  of the f r e e  electron. The t h i r d  e f f e c t  i s  the 
exchange e f f e c t  which i s  a manifestation of the Paul i  exclusion pr inc ip le  f o r  
o r b i t a l  e lectrons of l i k e  spins These l a s t  two e f f e c t s  a r e  discussed i n  
d e t a i l  i n  reference 24. Kivel correlated the theo re t i ca l  po ten t i a l  and exper- 
imental data  f o r  e l a s t i c  electron-atom sca t te r ing  (ref.  25). by assigning 
constants of proport ional i ty  t o  the  calculated polar iza t ion  and exchange terms. 
To obtain c o l l i s i o n  in t eg ra l s  of various orders, the  r e su l t i ng  po ten t i a l  was  
converted t o  the  more f a m i l i a r  form 

The f i r s t  e f f e c t  i s  the  

A n  

The second e f f e c t  is  the net  polar izat ion,  or charge 

'13 = 2.24&10-40r-3.65 (30) 

where q ( r )  i s  the  po ten t i a l  i n  ergs and r the  i n t e r p a r t i c l e  distance in  
centimeters.  
of various orders i s  described i n  reference 18. 
shown i n  f igu re  2 ( c ) .  

The conversion of t h i s  type of po ten t i a l  t o  co l l i s ion  in t eg ra l s  
The r e su l t i ng  values a re  

A percentage of atoms i n  a high-temperature equilibrium mixture e x i s t s  
i n  e lec t ronic  excited s t a t e s ,  whereas atoms used i n  sca t te r ing  measurements 



are i n  the ground or near-ground s ta tes .  
t he  poten t ia l s  obtained from sca t t e r ing  measurements can represent those f o r  
t he  high temperature atoms. No general izat ions can be made f o r  the  following 
reasons: (1) The amount of exc i ta t ion  imparted t o  the  impinging atom o r  ion 
i n  the  scat ter ing experiments can vary because of t he  many ava i lab le  tech-  
niques f o r  obtaining these p a r t i c l e s ,  and (2) t he  levels of t he  f i r s t  f e w  
exci ted s t a t e s  f o r  these impinging p a r t i c l e s  and t h e i r  corresponding se lec-  
t i o n  rules  ( i . e . ,  l i fe t imes of these states) vary from atom t o  atom. 

T h i s  poses the  question of whether * 

The d i s t r ibu t ion  o f  states f o r  t h e  argon p a r t i c l e s  used i n  the  sca t t e r ing  
measurements can be deduced by examining t h e  experimental technique, then cor- 
r e l a t i n g  it with the  avai lable  exci ted states. The argon po ten t i a l s  i n  equa- 
t i o n s  (23) , (24), and (30) were obtained by e s sen t i a l ly  the  same experimental 
technique. The impinging ions were obtained by the  following s teps:  (1) Ther- 
m a l  electrons emanating from a fi lament were accelerated through a p o t e n t i a l  
g rea te r  than the  f i r s t  ionizat ion po ten t i a l  of argon (15.76 ev ) ,  and (2) t he  
electrons were impacted against  neu t r a l  argon atoms which are near room t e m -  
perature,  thereby crea t ing  argon ions.  These ions are, i n  turn ,  accelerated 
and directed in to  the  co l l i s ion  chamber. When the  impinging p a r t i c l e s  were 
required t o  be neu t r a l  argon atoms, then they were obtained by the  addi t iona l  
s t ep  of neut ra l iza t ion  o f  t he  high ve loc i ty  ions by charge exchange jus t  
before the co l l i s ion  chamber. 

The f i r s t  exci ted state f o r  s ingly ionized argon i s  a r e l a t i v e l y  low one 
(0.18 ev) . The co l l i s ion  of t he  electrons with the  argon atoms should cause 
the  formation of argon ions i n  both the  ground and f i r s t  exci ted states, with 
the  populations i n  proportion t o  t h e i r  s t a t i s t i c a l  weight ( g i  
I n  other words, two t h i r d s  of t he  impinging ions are i n  the  ground state and 
cne th i rd  of t he  ions are i n  the  f i r s t  exci ted state.  Because the  exci ted 
s ta te  i s  metastable according t o  quantum-mechanical se lec t ion  rules, t he  popu- 
l a t i o n  of s t a t e s  of the impinging ions w i l l  remain i n  the same proportion. 

i n  eq. (2)). 

If a beam of neutral  argon atoms i s  required f o r  the sca t te r ing  experi-  
ment, then the  d i s t r ibu t ion  of states i s  qui te  d i f f e ren t  because of t he  
absence of  any l o w  lying exci ted s ta tes  f o r  neu t r a l  argon. A s  a r e s u l t ,  neu- 
t r a l i z a t i o n  by charge exchange causes a beam of neu t r a l  atoms t o  e x i s t  i n  t h e  
ground s t a t e  only.  

The d i s t r ibu t ion  of states i n  an equilibrium mixture of ions and atoms i s  
d i f fe ren t .  For example, t h e  percentage of argon atoms and ions i n  exci ted 
states i s  given i n  the  following t a b l e .  

T7 
OK 

300 
5 7 000 
10 , 000 
15 , 000 
20 , 000 
25 , 000 
30 , ooo 

Percent atoms 
i n  exci ted 

s ta te  
0 
0 
0 
1.0 
12.6 
43.7 
70.6 

Percent ions 
i n  f i r s t  

exci ted s ta te  
0.5 
24.9 
28.9 
30.4 
31.0 
31.3 
30 -7 

Percent ions 
i n  higher 

exci ted state 
0 
0 
0 
0 
.2 
.8 
3.5 
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The percentage of equilibrium atoms in  excited s t a t e s  i s  not large below 
20,000° K .  
s m a l l  (appendix A ) .  
obtained from sca t te r ing  of ground state atoms, i s  a good approximation 
throughout the  specif Led range of temperatures and pressures.  
percent population of ions i n  the  f i rs t  excited s t a t e  obtained i n  the  sca t t e r -  
ing experiments i s  for tu i tous ly  close t o  the  population found i n  a high- 
temperature equilibrium mixture. 
i s  a good approximation f o r  the  range of temperatures and pressures where ion- 
atom in te rac t ions  are important. 

Above t h i s  temperature, the number of atoms a s  compared t o  ions i s  
A s  a r e s u l t ,  the  potent ia l  of  equations (23) and ( 3 O ) ,  

The 33-1/3- 

Accordingly, t he  po ten t i a l  of  equation ( 24) 

Ions do not  ex i s t  i n  equilibrium mixtures at temperatures as low as 
300' K .  
t r a t e  a point .  Had the  t r ans i t i on  from the f i r s t  excited s t a t e  t o  the  ground 
s t a t e  been allowed, then t h e  population o f  ions i n  the  f i r s t  excited s t a t e  
f o r  the  sca t te r ing  measurements would have been 0.5 percent ra ther  than 33-1/3 
percent.  

However, t he  population f igure a t  t h i s  temperature serves t o  i l l u s -  

This would have caused a large error i n  the  po ten t i a l  of equation(24). 

In te rac t ions  between charged p a r t i c l e s  are described by the  shielded 
Coulonib po ten t i a l  

The quantity h i s  the Debye shielding distance and i s  defined2 as 

f o r  singly ionized gases, where e is  the  electron charge. The physical 
significance of h can be described as follows. I n  a plasma, a given ion 
will have an excess of negatively charged pa r t i c l e s  i n  i t s  v ic in i ty ,  and vice 
versa, as a result of the  at t ract ive-repuls ive nature of Coulomb forces .  
sequently, t he  po ten t i a l  i s  exponentially attenuated by the  screening e f f ec t  
of t he  electrons so  t h a t  it decreases f r o m  
the  given p a r t i c l e  t o  negl igible  values a t  distances la rge  compared t o  
Therefore, h 
e f fec t ive  range of  a given charged pa r t i c l e .  
sponding t o  the  shielded Coulomb po ten t i a l  were derived by Liboff i n  refer- 
ence 27. The values of these co l l i s ion  integrals  are shown i n  f igu res  2(d) 
through 2 ( f ) .  

Con- 

e / r  i n  the immediate v i c i n i t y  of 
h. 

may be viewed as a correlat ion distance proportional t o  t h e  
The co l l i s ion  in t eg ra l s  corre- 

'Spitzer ( r e f .  26) defines the Debye shielding distance as 
h = (kT/hn3e2)li2.  
of the  charge-charge co l l i s ion  in t eg ra l s  a r e  based on t h i s  def in i t ion .  

However, equation (32) i s  used i n  t h i s  paper s ince a l l  



Expressions f o r  Second-Order Basic Transport Coeff ic ients  

The der ivat ion of t he  second-order expressions f o r  t he  bas ic  t ranspor t  
coeff ic ients  w a s  out l ined by Hirschfelder, Curtiss, and Bird i n  reference 8 .  
However, second-order expressions were given only f o r  t he  t r a n s l a t i o n a l  t h e r -  
m a l  conductivity and the  thermal diffusion coef f ic ien ts .  Hirschfelder e t  a l .  
expressed the  v iscos i ty  and multicomponent d i f fus ion  coef f ic ien ts  i n  terms of 
the f i r s t -o rde r  approximation ( i . e . ,  only the  f i r s t  t e r m  i n  the  series expan- 
s ion of Sonine polynomials), s ince the  f i r s t  approximation i s  the  predominant 
contribution f o r  neut ra l  gases.  
c ien t ly  accurate f o r  a p a r t i a l l y  ionized gas.  Since a se t  of bas i c  t ranspor t  
coef f ic ien ts  i s  required f o r  a standard i n  t h i s  paper, t h e  accuracies of t he  
coef f ic ien ts  i n  t h i s  set must be consis tent .  Consequently, t he  second-order 
expressions3 f o r  A t ,  DT, 7 ,  and D i j  
paragraphs. 

This order of approximation may not be s u f f i -  

w i l l  be given i n  the  next f e w  

The f i r s t  component of thermal conductivity i n  equation (16), A t ,  i s  the  
only component predicted by c o l l i s i o n  e f f e c t s  alone. 
described by Muckenfuss and Cur t i ss  ( r e f .  30) i n  terms of a hypothetical  i so -  
l a t e d  gaseous system, as "the thermal conductivity of a multicomponent system 
i n  which the  diffusion forces  vanish. If an i n i t i a l l y  uniform gas mixture i s  
placed i n  a uniform temperature gradient,  a thermal conductivity measurement, 
before any thermal diffusion takes  place,  would give 
t i m e ,  however, concentration gradients  appear and the  d i f fus ion  forces  bu i ld  
up unt, i l  t h e  diffusion ve loc i t i e s  vanish ( the  s ta t ionary  s ta te )  . " 
order expression f o r  t h i s  component i s  given i n  reference 8 as 

This component i s  

A t .  I n  t h e  course of 

The second- 

3The se lec t ion  o f  t h e  second-order expressions should not  give the  conno- 
t a t i o n  that it i s  the  most accurate formulation of t he  Chapman-Enskog approach. 
An analysis by Landshoff ( refs .  28 and 29) f o r  an e lec t ron  gas ( i n f i n i t e l y  
heavy atoms) shows t h a t  third-order  A t  are 18 percent higher than second- 
order values, whereas fourth-order A t  
less than 1 percent.  

are higher than third-order  values by 
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Note t h a t  t h e  determinants i n  both the  numerator and denominator contain 
subdeterminants whose elements are designated by the  superscr ipts  00, 01, 10, 
and 11. 
ia l s  used i n  a pa r t i cu la r  subdeterminant. For example, t h e  f i rs t  Sonine poly- 
nomial ( m  = 0) and t he  second Sonine polynomial (m = 1) are  implici t  i n  t h e  
0 1  subdeterminant. The elements qij  mm are  re la ted t o  the  elements Q i j  by 

These superscr ipts  correspond t o  the combination of Sonine polynom- 

-mm’ 



-mm' m' -m' The elements Q i j  a re  defined r a the r  than qij  , since the  elements Q i j  
w i l l  also be used i n  the  calculat ion of the thermal diffusion coef f ic ien t .  
The elements are 

-00 Qii = 0 

- ("l) (35b) 
-8n.m-(nimi + n-m.) (1'1) 8nkn jmkmj 

'ik 
-00 - J J  J J  
Q i j  - ,J-(mi + m j )  Qi j d q ( m i  mk) 

where k # i # j .  

( 38b 1 
For these elements .Qij = n j i ,  but  Q i j  # G j i .  The values f o r  A t ( 2 )  f o r  par- 
t i a l l y  ionized argon are  shown i n  f igu re  3. 

the  thermal diffusion coeff ic ient ,  DT. 
as 

The l a s t  component of the  thermal conductivity i n  equation (16) contains 
The second-order expression i s  defined 
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The second-order expression for the  viscosi ty  i s  
T-l 
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where 
ond subscript  i n  
ever, t h i s  does not  m e a n  t h a t  the  e f fec t  of the  second Sonine polynomial 
( m  = 1) has been dropped out,  f o r  the  values of 
of l inear  equations containing the  f irst  and second Sonine polynomials. 

b j0 (2 )  i s  a Sonine expansion coefficient of t he  second order. The sec- 
b j0 (2 )  denotes the first Sonine polynomial ( m  = 0 ) .  How- 

bjo(2)  a re  derived f r o m  a set 



The derivation of the Sonine expansion coefficients, bj,(2), are included * 
in appendix C, since they were not derived in reference 8. 
are 

These coefficients 
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'The elements i n  the  01, 10, and 11 subdeterminants are iden t i ca l  with those 
i n  equations ( 3 6 ) ,  ( 3 7 ) ,  and (38). The elements i n  the  00 subdeterminant are  

The values of ~ ( 2 )  f o r  p a r t i a l l y  ionized argon are shown i n  f igure  4. 

The second component of t he  thermal conductivity i n  equation (16) con- 
t a i n s  the  multicomponent diffusion coeff ic ients ,  Dij. 
expression i s  defined as 

The second-order 

where 

derivation of cio ("i)(2) i s  shown in  appendix C .  These coef f ic ien ts  are 

c ( j J i ) ( 2 )  i s  a Sonine expansion coeff ic ient  of t he  second order.  The i o  
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The elements i n  the four subdeterminants a re  iden t i ca l  with those i n  equa- 
t ions  (35) t o  (38).  The values of the various second-order multicomponent 
diffusion coef f ic ien ts  a re  shown i n  figure 5 f o r  a pressure of 1 atmosphere. 

The coef f ic ien t  of e l e c t r i c a l  conductivity, 6, can be derived f rom the  
expression for the  current density,  - j ,  which i s  defined as 
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where 5 i s  an external ly  applied e l e c t r i c  f i e ld .  Subst i tut ing equation (14)  
i n to  (45) and re ta in ing  only 
have 

The calculated values of t h e  
values of t he  multicomponent 
f igure  6. 

those terms containing the  e l e c t r i c  f i e l d ,  we 

e l e c t r i c a l  conductivity based on the second-order 
diffusion coeff ic ients  (eq.  (43)) are shown i n  

DISCUSSION OF RESULTS AND COMPARISONS 

Basic Transport Coefficients f o r  Pa r t i a l ly  Ionized Gases 

I n  ex is t ing  calculat ions of the  basic transport  coef f ic ien ts  f o r  high- 
temperature reac t ive  gases, where the  number of species i s  much greater  than 
f o r  argon (refs. 1 t o  6) ,  t he  second-order expressions have not been used 
because of computational d i f f i c u l t i e s  . For example, an equilibrium mixture 
of COz and N2 may have as  many as e ight  species simultaneously. I n  t h i s  case 
the  calculat ions f o r  DT(2) would necess i ta te  the  
use of t he  16th order determinant. 
s t i t u t e d  and have been proven experimentally (refs. 4, 10, and 12) t o  be 
f a i r l y  good up t o  temperatures where dissociation occurs. 
i t y  of these approximations a t  temperatures where ionizat ion occurs, i s  ques- 
t ionable .  I n  t h i s  section the second-order basic t ransport  coef f ic ien ts  of 
argon w i l l  be compared with those calculated by these approximate methods. 
Any d i s p a r i t i e s  which may appear f o r  argon should be indicat ive of t he  d i s -  
p a r i t i e s  which would appear f o r  other p a r t i a l l y  ionized gases. 

~ ( 2 1 ,  Dij(2) ,  At(2), and 
A s  a result, approximate methods were sub- 

However, the val id-  

The ex is t ing  approximations assume tha t  the  f i r s t -o rde r  expressions f o r  
the  components of v i scos i ty  and the  multicomponent diffusion coef f ic ien ts  are 
s&f ic ien t ly  accurate.  I n  other words, t he  approximation i s  equivalent t o  
dropping the  01, 10, and 11 subdeterrninants i n  equations (41) and (44 ) .  This 
assumption w a s  j u s t i f i e d  by comparisons of calculated f i r s t -o rde r  values with 
experimental data (ref.  8) ,  where the  intermolecular forces  were s m a l l ,  the  
masses of t h e  d i f f e ren t  species were comparable, and the  temperatures were 
r e l a t i v e l y  low (a  few hundred degrees Kelvin above room temperature). 

Viscosi ty . -  Firs t -order  values of the  viscosi ty  of p a r t i a l l y  ionized 
argon were calculated,  then compared with the second-order values of equa- 
t i on  (40). The grea tes t  d i f f e r -  
ence between t h e  f i r s t -  and second-order values i s  only 1 percent and occurs 
a t  conditions of complete ionization. An examination of the  magnitudes of t h e  
Sonine expansion coeff ic ients ,  bio,  shows the reason why no large changes 
should be expected. 
c ient ,  beo(l) ,  are la rger  than the  second-order values by 12  t o  15  percent, 
whereas the  f i r s t - o r d e r  values f o r  the atom and ion, b A o ( l )  and b ~ + ~ ( l ) ,  a re  
lower than the  corresponding second-order values by only 1 percent.  

The f i r s t - o r d e r  approximation i s  qu i te  good. 

The f i rs t -order  values of t he  e lec t ron  expansion coeff i -  

This 
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comparison indicates t ha t  second-order e f f ec t s  a r e  important only f o r  
electrons.  
l a rger  than be0 because of t he  minute e lectron mass. Consequently, f o r  v i s -  
cos i ty  (i. e. ,  t ransport  of momentum), the  second-order e f f e c t s  are negl igible .  

However, bAo and bA+o a re  roughly three  orders of magnitude 

Multicomponent diffusion coef f ic ien ts . -  F i r s t -order  values of the  multi- 
component diffusion coef f ic ien ts  were calculated,  then compared with the  
second-order values of equation (43) i n  f igure  5 .  For the  coef f ic ien ts  
DA-A+, DA+-A, and D A - ~ ,  there  i s  only a few percent difference between the 
f i r s t -  and second-order values.  However, the  second-order coef f ic ien ts  
~ ~ + - ~ ( 2 ) ,  D,-A(~), and D , - A + ( ~ )  a re  larger  than the corresponding f i r s t -  
order coeff ic ients  by 25 percent a t  50-percent ionizat ion and by 45 percent a t  
complete ionizat ion.  
between 
"the use of one term alone does not describe the  dependence of the diffusion 
coeff ic ient  on concentration; the  s l i g h t  concentration-dependence i s  brought 
out when the  f irst  two terms in  the  Sonine polynomial a re  used." 
t a n t  may be the  neglect of the 11 subdeterminant which completely drops out 
t he  electron-electron in te rac t ions .  The elements i n  the  determinants f o r  
~ ~ + - ~ ( 2 ) ,  D , - A ( ~ ) ,  
becomes important because of the  combined e f f ec t s  of large intermolecular 
force and small mass. 

Several f ac to r s  a re  responsible f o r  the discrepancy 
D i j (  1) and D i j (  2 ) .  According t o  Hirschfelder e t  a l .  i n  reference 8 

More impor- 

and De-A+(2) show t h a t  the  electron-electron in te rac t ion  

These discrepancies have important implications i n  the  calculat ion of  the  
If the  assumption l a s t  t w o  components of the  thermal conductivity (eq.  ( 1 6 ) ) .  

i s  made tha t  the  f i r s t -order  multicomponent diffusion coef f ic ien ts  are  suff i- 
c ien t ly  accurate, then they can be expressed i n  terms of t he  binary 
coeff ic ients  

This expression of 
simplifications i n  the  expressions f o r  the  concentration gradients and d i f fu-  
sion ve loc i t ies .  However, a 25 t o  45 percent e r ror  i n  ce r t a in  of the  f i r s t  
order  diffusion coef f ic ien ts  could mean a much grea te r  e r ro r  i n  some of the  
concentration gradients and diffusion ve loc i t ies .  For example, the  f i r s t  com- 
ponent o f  the  veloci ty  in  equation (14)  can be a difference as  well  as a sum 
of the  quant i t ies  rnjDijdj because 

Dij(1) i n  terms of a 9 - - ( 1 )  can r e s u l t  i n  considerable 1 J  

Consequently, f o r  p a r t i a l l y  or f u l l y  ionized gases, the second-order diffusion 
coeff ic ients  should be  used f o r  accurate predictions of A r  and A d .  

4Unlike the  elements i n  the  v iscos i ty  determinants (eqs .  (38a) and (42a))  
which contain l i k e  interact ions i n  both the  00 and 11 subdeterminants, the 
elements i n  the  multicomponent diffusion determinants (eqs . (35a) and (38a) ) 
contain l i k e  interact ions i n  the  11 subdeterminant only. 

26 



The significance of t he  quantity D i j  i s  not given f o r  a mixture with 
more than two components. 
sion veloci ty  (eq.  (14))  indicates  t h a t  
t he  diffusion of species i because of t h e  interact ion of species i with 
species j .  However, an examination of t he  terms f o r  t he  Sonine expansion 
coef f ic ien ts  e!', i, (eq. (44) ) shows t h a t  interactions between a l l  species 
affect  t h e  value of D i j .  Consequently, D i j  may be described more ap t ly  as  
a measure of t he  diffusion of species i with respect t o  species j f o r  a l l  
interact ions,  including interact ions between l i k e  pa r t i c l e s  (e.g. ,  electron- 
e lec t ron) .  Dij(2)  i n  f igure  5 
with t h i s  descr ipt ion i n  mind. The values of 
t i c a l  within f i v e  decimal places f o r  conditions ranging from less than 1 per- 
cent ionizat ion t o  almost f u l l  ionization. 
diffusion coeff ic ient ,  S i j ,  are within 1 percent of these values. The values 
of D e - ~ ( 2 )  and De-~+(2)  d i f fe r  by only 1 percent a t  most f o r  a l l  conditions. 
These cha rac t e r i s t i c s  indicate  t h a t  t he  atom and the  ion diffuse with respect 
t o  each other,  independent of any electron e f fec ts .  This i s  possible despite 
t he  large Coulonib forces  between ions and electrons, because of t he  much 
grea te r  mass of the  atom and ion. 
l e a s t  an order of magnitude la rger  than 
grea te r  than 25 percent. 
a f f ec t  ion o r  atom diffusion, i t s  own diffusion i s  affected more by the  ion 
than the  atom because of t he  large Coulombic forces .  

An examination of the f i rs t  component of  the  diffu-  
D i j  may be defined as a measure of 

10 

It may be ins t ruc t ive  t o  compare the various 
D A - A + ( ~ )  and D A + - A ( ~ )  are  iden- 

Even the  values of the  binary 

Figure 5 also shows t h a t  D A - ~ ( ~ )  i s  a t  
DA+-e(2) a t  ionization leve ls  

This indicates  that  although the  electron does not 

Translat ional  thermal conductivity.- In  the  Chapman-Enskog formulation, 
t h e  f i r s t - o r d e r  approximations ( i . e . ,  neglect of t he  01, 10, and 11 subdeter- 
minants) f o r  t h e  t r ans l a t iona l  thermal conductivity, A t ,  and the  thermal d i f -  
fusion coeff ic ients ,  DT, are both ident ica l ly  zero. 
( r e f .  3 0 )  searched f o r  a s implif icat ion of the second-order As a first 
s tep  they assumed t h a t  f i r s t -o rde r  mlticomponent diffusion coef f ic ien ts  were 
su f f i c i en t ly  accurate f o r  nonreactive monatomic gases, and could be expressed 
i n  terms of  binary diffusion coeff ic ients .  A s  a r e su l t ,  t he  heat flux vector 
of equation (16) could be expressed as 

Muckenfuss and Curtiss 
A t .  

m 

where 

I n  other words, t h e  thermal diffusive component, Ad,  w a s  s p l i t  i n to  two pa r t s ,  
one pa r t  proportional t o  the  temperature gradient and the  other  proportional 
t o  t he  differences i n  diffusion ve loc i t ies .  The f i r s t  p a r t  of A d  w a s  then 



added t o  the  t r ans l a t iona l  thermal conductivity, A t ,  and the  sum5 defined as . 
A,. 
s m a l l  for  nonreactive gases near room temperature, then A, could be replaced 
by a modification of the determinant f o r m  of equation (33) f o r  
modification consisted i n  discarding the 00, 01, and 10 subdeterminants. 
Numerical calculations were made f o r  two ternary mixtures, He-A-Xe and Ne-A-Kr 
a t  311' K .  Muckenfuss and Curtiss concluded tha t  thermal diffusion e f f e c t s  
were proportional t o  the mass d ispar i ty  between the  in te rac t ing  species.  
example, the  difference between A t  and A, (eq.  (50 ) )  was 2 percent f o r  the  
He-A-Xe mixture (Mxe/MHe - 33) but  only 0 . 5  percent f o r  t he  Ne-A-Kr mixture 
( M K ~ / M N ~  - 4 ) .  
01, and 10 subdeterminants i n  equation (33) were discarded a difference of 
only 2 percent would be incurred f o r  the  He-A-Xe mixture and an 0.5-percent 
e r ror  f o r  the  Ne-A-Kr mixtures. 
t h a t  equation (50) "is found t o  be iden t i ca l  with an 'approximate' f o r m l a  f o r  
t he  thermal conductivity derived on the  assumption t h a t  the  thermal diffusion 
coeff ic ients  a r e  negligibly small." AS a r e su l t ,  ex is t ing  approximations 
( r e f s .  1 t o  6 )  have made use of the following s implif icat ions:  
t i t i e s  DT 
f o r  the t r ans l a t iona l  thermal conductivity i s  assumed t o  be equal t o  the 
approximations f o r  A,. 
order expression At(2) (eq. (33)), if  t he  00, 01, and 10 subdeterminants a re  
discarded. 

Muckenfuss and Curt iss  reasoned t h a t  since thermal d i f fus ive  e f f ec t s  are 

A t .  This 

For 

The calculat ions a l s o  showed tha t  if the  elements i n  the 00, 

Consequently, Muckenfuss and Cur t i ss  s t a t ed  

(1) The quan- 
f o r  a l l  species a re  assumed t o  be zero, and ( 2 )  the  approximation 

That is ,  they both can be derived from the  second- 

These s implif icat ions have been used f o r  a p a r t i a l l y  ionized gas 
where the mass d ispar i ty  i s  extremely large (MatonJMelectron - l o 4 ) .  

The v a l i d i t y  of the A t  approximation f o r  a p a r t i a l l y  ionized gas can be 
determined from f igure  7 .  This f igure  compares the  second-order A t  and t he  
approximate A t  a t  pressures of  lo-', and lo2 atmospheres. The second- 
order values a re  la rger  by 30 percent a t  50-percent ionizat ion and la rger  by 
50 percent at complete ionizat ion a t  the  lower pressures.  The smaller dispar-  
i t y  a t  100 atmospheres can be a t t r i bu ted  t o  an increase i n  the  Debye shielding 
e f f ec t  ( i . e . ,  a greater  departure from the  Coulomb po ten t i a l ) .  A s i m i l a r  c a l -  
culation shows tha t  the  second-order values a re  higher by almost  100 percent 
f o r  a mixture o f  doubly ionized atoms and electrons.  
discrepancies can be seen by an inspection of the  magnitudes of the elements 
i n  the  A t ( 2 )  determinants. The determinant shown below i s  the  denominator of 
equation (33) f o r  a temperature of 15,000° K and a pressure of  atmosphere 
(99-percent ionizat ion) .  

The source of the 
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1 1 0 10-13 lo-10 io -5 

io-1 10-l~ 1 10-l~ 
10-9 10-10 10-4 10-2 

io+ 10-5 10-5 I 10-11 10-9 10-4 

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - -  
10 SUBDETERMINANT I 11 SUBDETERMINANT 

5This separation of t h e  thermal diffusive component,Ad, i n to  two pa r t s  i s  
not a val id  operation f o r  a p a r t i a l l y  ionized gas because of the  discrepancy 
between the  f i r s t -  and second-order values of the multicomponent coef f ic ien ts .  
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. The values of  the elements have been rounded off t o  the  nearest  power of  10, 
then divided through t o  give a value of unity t o  the  la rges t  values. 
these values were subst i tuted in to  the  expanded terms of  equation (33), t he  
elements i n  t h e  01 and 10 subdeterminants were found t o  contribute very l i t t l e  
t o  the  f i n a l  value of A t ,  whereas the  elements i n  the  00 subdeterminant were 
contained i n  t h e  dominant terms. 
second-order expression f o r  A t  (eq. (33)) must be used. 

When 

This comparison shows tha t  t he  complete 

Another approximation f o r  the  t rans la t iona l  thermal conductivity of  a 
p a r t i a l l y  ionized gas has been proposed by Fay (ref. 31). 
A t  i s  

H i s  expression f o r  

A t  = A t ,  + Ap 

where A t ,  
calculated from equations (22) and (23), and 
of a s ingly ionized argon plasma as specified by Spi tzer  i n  reference 26. The 
A t  
order theory (eq. (33)) i n  f igure  8.  Comparisons were made a t  the  lower pres-  
sures and 10-= a t m )  . It can be seen t h a t  equation (51) i s  a poor 
approximation a t  atmosphere, and a fair approximation a t  10-1 atmosphere. 
The la rge  discrepancy a-t atmosphere can be a t t r i bu ted  t o  the  f a c t  t h a t  
A t ,  i s  not dependent upon density, whereas Ap increases rapidly with den- 
s i t y .  A more reasonable expression f o r  A t  

i s  t he  t r ans l a t iona l  thermal conductivity of pure atomic argon, 
Ap i s  the  thermal conductivity 

values calculated by equation (51) are  compared with those f rom the  second- 

can be used f o r  degrees of ionization, E ,  greater than 0.5. Neither equa- 
t i o n  (51) nor (52) i s  a good approximation i n  the region of moderate degrees 
of ionizat ion (0.2 < E < 0.5). 

Thermal diffusion coef f ic ien ts . -  The expressions f o r  the  last  two compo- 
nents of  the  thermal conductivity, A, and Ad, i n  equations (14) and (16) con- 
t a i n  the  thermal diffusion coeff ic ients ,  DT. Existing approximations have 
assumed t h a t  Di i s  ident ica l ly  zero. Typical values of the  second-order 
thermal ciiffusion coeff ic ients  f o r  t he  argon atom, ion, and electrons are 
shown i n  f igure  9. T and the  heat flux vector (eq. (16)), D i  always occur i n  combination with the 
number density Although the  e lec-  
t ron  thermal diffusion coeff ic ient ,  De, i s  a t  most two orders of magnitude 
smaller than those f o r  t he  atom and ion, t h e  e lectron mass i s  four orders of  
magnitude smaller. Consequently, thermal diffusive e f f e c t s  can be a t t r i bu ted  
almost en t i r e ly  t o  t h e  electron t e r m .  This does not mean, however, t h a t  only 
the  electron in te rac t ions  are important. The r o l e  of heavy p a r t i c l e  diffusion 
w i l l  be discussed l a t e r .  I n  i t s  present form, the  second-order theory cannot 
predict  accurately the  concentration gradients of e lectrons.  However, an 
order of magnitude calculat ion using a range of expected values f o r  
shows t h a t  t h e  contribution of  e lectron thermal diffusion t o  
be of  the same order of magnitude as  A t .  

T 

I n  the  expressions f o r  t he  d i f fus ive  veloci ty  (eq. (14 ) )  

ni ,  and the  m a s s ,  mi,Tin the denominator. 

axe/& 
A, and A d  can 



The question a r i s e s  as t o  whether DE f o r  p a r t i a l l y  ionized argon can be- 
used f o r  other p a r t i a l l y  ionized gases.  
determinant elements i n  equation (39) shows t h a t  the  value of 
determined by the  values of t he  co l l i s ion  in tegra ls  for t he  electron-electron, 
electron-ion, ion-ion, and electron-atom in te rac t ions .  Also, DT i s  not sen- 
s i t i v e  t o  changes i n  the  remaining in te rac t ions .  All p a r t i a l l y  ionized gases 

have essent ia l ly  the  same value of 
temperature f o r  t he  following r e a s o s - 7 1 )  A l l  electron-ion in te rac t ions  are 
described by the  shielded Coulomb po ten t i a l  (eq. (31)), and (2)  mass e f f ec t s  
are determined by the reduced masses of binary systems which are e s sen t i a l ly  
the  same f o r  a l l  ion-electron systems. 

Inspection of  the  magnitudes of t he  
i s  mainly DT 

f o r  a given electron density and ( 2 , s )  

The electron-atom co l l i s ion  in tegra ls  f o r  a l l  gases do not have the  same 

f o r  hydrogen, nitrogen, and 
It would be exceedingly d i f f i c u l t  t o  assess the  r e l a -  

-( 1,4 values, as evidenced by the  comparison of 
oxygen in  reference 6 .  
t i v e  e f fec ts  of electron-ion and electron-atom in te rac t ion  by inspection of 
t he  elements i n  t h e  determinant expression f o r  
simply by changing the  constants i n  the  electron-argon atom po ten t i a l  
(eq.  ( 3 O ) ) ,  then comparing the  resu l t ing  values of 
i n  cpA- were made t o  include extreme values of RA-e which are  found f o r  
other  agoms of  i n t e r e s t  (e .  g . ,  r e f .  6 ) .  The f i r s t  resu l ted  i n  an increase i n  
the  RA-e in tegra ls  by a f ac to r  of two, and t h e  second i n  a decrease by a 
f ac to r  of s i x  at 5,000' K. As t o  be expected, d i s s imi l a r i t i e s  showed up f o r  
conditions of low degrees of ionizat ion.  
were as high as 50 percent a t  1-percent ionizat ion.  However, it i s  believed 
t h a t  the thermal d i f fus ive  e f f ec t s  are r e l a t ive ly  s m a l l  i n  t h i s  region because 
of  the rapid drop i n  the  magnitude of 
( f i g .  9). 
mately 2 percent, and a t  50-percent ionizat ion the  difference i s  less than 
1 percent. These considerations show t h a t  t h e  thermal diffusion of e lectrons 
i s  dictated by the  ion-electron in te rac t ion  ra ther  than the  atom-electron 
interact ion.  These considerations a l s o  show tha t  the  DZ values f o r  par- 
t i a l l y  ionized argon can be used as a good approximation f o r  other p a r t i a l l y  
ionized gases. These DZ values a re  presented i n  f igu re  10 as a function of 
electron density and temperature. 

QAme 

DE. However, t h i s  can be done 

DE. Two s e t s  of  changes 

For example, t he  differences i n  DE 

DE with decreasing temperature 
A t  25-percent ionizat ion the  m a x i m  difference drops t o  approxi- 

Another in te res t ing  conclusion can be reached by an inspection of the  
various D T  i n  f igure  9 .  
fusion coeff ic ients  a re  within 1 percent of each other i n  magnitude f rom a few 
percent ionization up t o  extremely high degrees of  ionizat ion.  A s  the  num- 

approaches the value of DZ near 100-percent ionizat ion.  These var ia t ions  
imply t h a t  the  diffusion motion of  both the  atom and ion a re  e s sen t i a l ly  inde- 
pendent of tha t  f o r  the  electron,  up t o  large degrees of  ionizat ion (approxi- 
mately 95 percent ) .  The d i f fus ive  motion of t he  electrons,  i n  turn,  i s  
dictated by the  ion ra ther  than the  atom because of the  much greater  magnitude 
of the Coulombic forces.  The same conclusion w a s  reached from an examination 
of  t he  multicomponent diffusion coeff ic ients ,  D i j (2 ) .  These var ia t ions point 
o u t  t ha t  f o r  a p a r t i a l l y  ionized gas, we can use some of the concepts of 
plasma physics d i rec t ly ,  but  other  concepts must be modified t o  account f o r  

It can be seen t h a t  the  atom and ion thermal d i f -  

be r  of  atoms approaches zero, DA+ T decreases i n  value, changes sign, then 



. t he  strong atom-ion momentum coupling. The e l e c t r i c a l  conductivity i s  an 
example i n  poin t .  The var ia t ions have extremely important implications Tor  
other  s i tua t ions .  Heavy p a r t i c l e  diffusion a l s o  would dominate where the 
heavier p a r t i c l e s  were ions of a s ingle  type diffusing with respect t o  each 
other due t o  temperature and/or concentration gradients,  or ions of  a given 
charge diffusing with respect t o  ions of a d i f fe ren t  charge. 
should be kept i n  mind f o r  the  subsequent discussion of the  e l e c t r i c a l  conduc- 
t i v i t y  of  a p a r t i a l l y  ionized gas and the  basic t ransport  coef f ic ien ts  of a 
f u l l y  ionized gas. 

This point 

E l e c t r i c a l  conductivity.- The exis t ing approximations f o r  calculat ing the  
e l ec t r i c& conductivity of a p a r t i a l l y  ionized gas (refs.  6, 32, and 33) are 
based on simple k ine t i c  theory which uses the concepts of an electron mean 
f r e e  path.  I n  references 6 and 32, the  Coulombic c ross  sections a re  empiri- 
c a l l y  modified so t h a t  the  resu l t ing  values o f  t he  e l e c t r i c a l  conductivity, (J, 

agree with Spi tzer ' s  values (ref.  26) a t  the l i m i t  of complete ionization. 
The approximation by Lin, Resler, and K a n t r o w i t z  ( ref .  33) i s  a typ ica l  
example. 
e lectron gas ( r e f .  26) and the  r e s i s t i v i t y  o f  a Lorentzian gas.6 
words, t he  atom-atom, atom-ion, and ion-ion in te rac t ions  were completely 
ignored. 
mental values of t he  e l e c t r i c a l  conductivity of argon obtained by Lin, Resler, 
and Kantrowitz (ref. 33) i n  a ser ies  of shock-tube experiments. 
mental values a re  divided in to  two groups, those where equilibrium w a s  reached 
during the  avai lable  time in t e rva l  (T > 10,OOOo K)  and those where the  conduc- 
t i v i t y  w a s  s t i l l  r i s ing ,  at  the  end of the available time in t e rva l  
(6,000~ < T < 10,OOOo K ) .  For t h e  l a t t e r  group t h e  experimental points  repre- 
sent the  maximum conductivity a t ta ined.  
were not considered t o  be accurate because o f  the  r e l a t ive ly  large amount of 
e lectrons or iginat ing f rom impurity atoms. 

They used an un rea l i s t i c  model which adds the  r e s i s t i v i t y  of an 
I n  other 

Also shown are  the experi-  Their values are shown i n  f igu re  11. 

The experi- 

Experimental points  below 6,000' K 

The experimental values w e r e  lower than those predicted i n  reference 33 
A t  tempera- by a f ac to r  of 25 a t  6,500' K and by a fac tor  of  7 a t  8,000' K. 

t u re s  above 10,OOOo K, t he  agreement i s  f a i r l y  good. Lin e t  al. a t t r i bu ted  
the  d i spa r i ty  at  the  lower degrees of  ionization t o  insuf f ic ien t  t e s t i n g  t i m e  
t o  reach equilibrium, and inaccurate values of the  electron-atom cross sec- 
t ion .  
could explain such la rge  d i spa r i t i e s .  

It i s  a matter of conjecture, however, as t o  whether these two e f f ec t s  

I n  contrast ,  the  e l e c t r i c a l  conductivity values calculated by the  second- 
order Chapman-Enskog f o r m l a t i o n  (eq. (46)) are a l so  shown i n  figure 11. 
agreement i s  much b e t t e r  i n  the  region o f  low ionizat ion where the  predicted 
values were higher than L in t s  experimental values by approximately 50 percent. 
A t  temperatures above 10,OOOo K, the  agreeement i s  good, indicat ing the  va l id-  
i t y  of the rigorous Chapman-Enskog formulation f o r  calculat ing the  e l e c t r i c a l  
conductivity of p a r t i a l l y  ionized gases at high degrees of ionization. 

The 

'A Lorentzian gas i s  defined as a binavy gas where t h e  mass of one type 
of p e t i c l e  i s  very small compared with the  mass of t h e  other, and where the  
in te rac t ion  between the  l i g h t  pa r t i c l e s  i s  negligible compared with t h e  i n t e r -  
action between unl ike pa r t i c l e s .  



Indirect ly ,  the  agreement i s  a l so  an ind ica t ion  o f  t h i s  v a l i d i t y  f o r  
calculat ing the  t r ans l a t iona l  thermal conductivit,y of p a r t i a l l y  ionized gases 
because the determinant elements f o r  both these conduct ivi t ies  are i d e n t i c a l  
except for  a mul t ip l ica t ive  constant.  

Cross sec t ions . -  I n  addi t ion t o  t h e  approximations described i n  t h e  pre-  
ceding paragraphs, Hansen made several  other  s impl i f ica t ions  i n  reference 1, 
which affected the  values of t he  v i scos i ty  and t r a n s l a t i o n a l  thermal conduc- 
t i v i t y .  The s implif icat ion which produced t h e  g rea t e s t  changes consis ted of 
r e l a t ing  the i n t e r p a r t i c l e  po ten t i a l  d i r e c t l y  t o  the  c o l l i s i o n  cross  section7 

and E!:'2). The purpose of the  s implif icat ion w a s  t o  bypass the  -( 1 9 1 )  

Qi j 
extremely complex s teps  which lead from the  i n t e r p a r t i c l e  p o t e n t i a l  t o  t he  
co l l i s ion  var iables  b,  and f i n a l l y  t o  t he  c o l l i s i o n  i n t e g r a l  
(eq.  (17)). Hansen's s implif icat ion consis ted of taking the  e f f ec t ive  c o l l i -  
s ion diameter, oi j ,  as t h e  i n t e r p a r t i c l e  dis tance where the  p o t e n t i a l  i s  equal 
t o  an empirically determined value. The e f f ec t ive  c o l l i s i o n  cross  sec t ion  i s  
then defined as 

X ,  Y i j '  and 

For the  v iscos i ty  cross sect ion 
energy), the value of the  po ten t i a l  i s  taken as +kT, and f o r  t he  d i f fus ion  

cross  section ai;,'), the  value i s  taken as f2kT. 

Q i j  ( i . e . ,  t he  t r ans fe r  of momentum and 

Figure 12 shows comparisons between the  cross  sect ions obtained by t h e  
empirical method and the  Chapman-Enskog cross  sect ions.  The r e s u l t s  are pre-  
sented i n  t h e  form of a r a t i o  of t he  empirical  cross  sect ion t o  t h e  Chapman- 
Enskog cross sect ion.  The value of the inverse power, n, used i n  the various 
in t e rpa r t i c l e  po ten t i a l s  i s  shown i n  the  upper margin. 
i c a l  cross sect ions a re  within a f e w  percent of each other  f o r  atom-atom 
(r-8*33) and atom-ion (approximately r-14*4) i n t e rac t ions .  For atom-electron 

interact ions (r-3-65),  the v iscos i ty  cross  sect ions nF:" agree within a f e w  

percent,  bu t  t he  d i f fus ion  cross  sect ion ('") f o r  t he  empirical  method i s  
13  percent lower. The empirical  method i s  completely inadequate f o r  obtaining 
Coulombic type cross sect ions (eq.  (31)). For t h i s  case the  effect ive inverse 
power i s  much smaller (equal t o  o r  more than 1 because of t h e  shielding 

The rigorous and empir- 

- 
7The c o l l i s i o n  cross  sect ions,  Q i j ,  are r e l a t ed  t o  the  c o l l i s i o n  i n t e -  

g ra l s ,  ilijj  by 
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-correct ion) ,  and the  s t rength of the  potent ia l  i s  much grea te r .  
t h a t  t h e  empirical v i scos i ty  cross section i s  20 percent lower a t  a pressure 
of lo2 atmosphere, and 80 percent lower a t  a pressure of lo-* atmosphere. 
d i spa r i ty  f o r  t h e  diffusion cross sections i s  even grea te r .  For exanqle, the 
empirical  diffusion cross  section i s  95 percent lower a t  a pressure of 

The r e s u l t  i s  

The 

atmosphere. 

To determine whether t he  discrepancies f o r  the  Coulombic cross  sections 
s t e m  from the  increased magnitude of  t he  poten t ia l  or i t s  range ( i . e . ,  n) , t he  
rigorous and empirical  cross sections were calculated f o r  a hypothetical  
s e r i e s  of inverse-power potent ia ls ,  

The constant of proportionali ty,  K,  was  adjusted t o  give a l l  t he  poten t ia l s  
the  same magnitude a t  a given intermoleculas distance.  The r e s u l t s  a re  shown 
as the  s o l i d  l i n e s  in  f igu re  12.  A comparison of t he  cross sect ions f o r  t h i s  
hypothetical  s e r i e s  with those f o r  t he  argon cross sections indicates  t h a t  t he  
shortcomings of the empirical method are independent of the  s t rength of t he  
po ten t i a l  (i .e. ,  the  constant of proport ional i ty) ,  bu t  a re  strongly dependent 
upon the  "hardness" of the  assumed model. I n  other words, the  empirical  
method fa i ls  f o r  low inverse power (i  .e . ,  "squishy" models) . 
empirical method f o r  calculat ing viscosi ty  cross sections should not be used 
f o r  inverse powers less than 2, and t h a t  f o r  calculat ing diffusion cross sec- 
t i ons  should not be used f o r  inverse powers less than 5.  

A s  a r e s u l t ,  the  

These discrepancies i n  the  empirical cross sections are  r e f l ec t ed  i n  
large e r ro r s  i n  the v iscos i ty  and t rans la t iona l  thermal conductivity. The 
magnitude of these e r ro r s  can be seen by subst i tut ing the  empirical cross sec- 
t i ons  in to  t h e  00 subdeterminant f o r  11 and t he  11 subdeterminant for A t ,  
then comparing corresponding values q and A t  based on the  Chapman-Enskog 
cross sect ions ( f i g s .  7 and 13). The q values based on the  empirical cross 
sections a re  5 percent smaller f o r  neut ra l  argon, bu t  la rger  by varying 
amounts at  appreciable degrees of  ionization. For complete ionizat ion,  where 
the  values of 7 are r e l a t i v e l y  small, the discrepancies range from 250 per- 
cent at the  lowest pressure t o  40 percent a t  t he  highest  pressure.  
values f o r  both sets of cross sections a re  approximately the  same at  zero 
ionizat ion.  As  t he  degree of ionizat ion increases, the  A t  values based on 
the  empirical  cross sect ions a re  grea te r .  For example, t he  discrepancy a t  a 
pressure of 
paring t h e  discrepancies i n  the  bas ic  transport coef f ic ien ts  ( f i g s .  7 and 13) 
with the  discrepancies i n  t h e  cross sections ( f i g .  12) points  out two f a c t s .  
F i r s t ,  t h e  d i f fus ive  cross sections do not have an appreciable e f f ec t  on 7 
and A t .  Second, the  r e l a t i v e l y  good agreement a t  t he  highest pressure can be  
a t t r i bu ted  t o  the  f a c t  that the  increased Debye shielding e f f ec t  has made the 
co l l id ing  p a r t i c l e s  "harder. I' 

The A t  

atmosphere for completely ionized argon i s  140 percent. Com- 
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Basic Transport Coeff ic ients  f o r  f i l l y  Ionized Gases 

For a f u l l y  ionized gas ( i  . e . ,  a mixture of equal numbers of e lec t rons  
and singly ionized atoms) a l l  binary in te rac t ions  are described by the  
shielded Coulomb p o t e n t i a l  (eq .  (31) ) . Using equation (31) i s  equivalent t o  
assuming a f i n i t e  upper l i m i t  on the  impact parameter i n  the  c o l l i s i o n  in t e -  
g r a l  (eq. (1-7)). 
between two p a r t i c l e s  i s  establ ished.  It was  shown i n  reference 27 t h a t  t h i s  
upper l i m i t  corresponds approximately t o  t h e  Debye shielding length,  h, 
defined in equation ( 3 2 ) .  However, a comparison of h with the  average par-  
t i c l e  distance, r ~ - ~ / ~ ,  i n  the following t a b l e  shows t h a t  
n-1/3 f o r  t he  range of temperatures and pressures i n  t h i s  paper. 

I n  o ther  words, a l i m i t  on the  range of t he  Coulomb force  

h i s  Larger than 

P? 
atrn 

T, 
OK 

10 -4 15, ooo 4.42 

10 -2 18,000 2.32 

1 30,000 1 . 5 1  

lo2 50,000 - 99 
This physical  s i t ua t ion  i s  not i n  accord with the  bas ic  assumption of binary 
co l l i s ions  and, a t  f i r s t  appearance, ind ica tes  t h a t  t he  Boltzmann equation i s  
not  va l id  f o r  gases w i t h  an appreciable degree of ion iza t ion .  This s i t ua t ion  
prompted Spi tzer  and h i s  
describes t ranspor t  phenomena ( spec i f i ca l ly  e l e c t r i c a l  and t r a n s l a t i o n a l  
thermal conductivity) due t o  many long-range simultaneous Coulombic in t e rac  - 
t i ons  with a given p a r t i c l e .  The t i m e  rate of change of t he  e lec t ron  and ion 
d is t r ibu t ion  funct ions caused by p a r t i c l e  in te rac t ions  f o r  the  Boltzmann equa- 
t i o n  ( i . e . ,  the r i g h t  s ide  of eq. (3 ) )  i s  replaced by the Fokker-Planck 
expression. Equation (3)  then becomes 

coworkers ( r e f s .  34 and 35) t o  derive a theory which 

U V ' /  -1 \ 
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The f i r s t  term on the  r i g h t  s ide 
s ide of equation (4 )  only i n  t h a t  the 
bo, t he  distance where the  def lect ion 

of equation (55) d i f f e r s  from the  r igh t  
upper l i m i t  of in tegrat lon i s  taken as 
angle i s  x/2, ra ther  than 03. This 

i n i t i a l  t e r m  accounts f o r  close encounters. Spi tzer  assumed t h a t  the  cumula- 
t i v e  e f f e c t s  of  the  f i rs t  term ( la rge  angle def lect ions)  are  small compared 
t o  the  second term ( s m a l l  angle def lect ions) .  Consequently, the  f i r s t  term 
on the  r i g h t  s ide of equation (55) w a s  neglected. The second t e r m  accounts 
f o r  dis tant  encounters which a re  defined as those with impact parameters 
between bo and h .  The quantity<Avx,j> represents the  mean value of t he  
ve loc i ty  change i n  p a r t i c l e  i, i n  the  x, y, or z direct ion,  i n  u n i t  time, 
resu l t ing  f r o m  d is tan t  encounters with pa r t i c l e s  of type j .  Distant 
encounters are defined as those with impact parameters between bo and h.  
Spi tzer  derived expressions for t h e  various <Av> re ta in ing  only those terms 
proportional t o  2n A, where 

Neglecting nondominant terms introduces an error  of the  order of 1/2n A.  

A s  a r e s u l t  of Spi tzer ' s  analysis,  the  Boltzmann equation w a s  considered 
inappropriate for calculat ing t ransport  properties of a fu l ly  ionized gas f o r  
a long period of time. Recently Gross (ref.  36), Grad (ref. 37) ,  Koga 
(ref.  38), and others re-examined the  mathematical implications of t he  
Boltzmann and Fokker-Planck equations. 
equation w a s  va l id  after a l l .  

They concluded t h a t  the  Boltzmann 
Grad stated tha t  

. . . The c r i t i c a l  point here i s  tha t ,  although the two physi- 
c a l  p ic tures  are e n t i r e l y  d i f fe ren t ,  t he i r  mathematical descriptions 
are ident ical!  The net  e f f ec t  of many successive independent small 
impulses i s  the  same as many simultaneous independent small impulses, 
provided only t h a t  t he  means and variances of t he  two impulse d i s t r i -  
butions are the  same (actual ly ,  the  en t i re  probabi l i ty  d is t r ibu t ions  
were taken t o  be the  same). Thus we conclude, without s e t t i ng  penci l  
t o  paper, t ha t  t h e  Fokker-Planck equation, which i s  an immediate con- 
sequence of the  s iml taneous  grazing impulse model, must y ie ld  r e s u l t s  
i den t i ca l  with those obtained from t h e  Boltzmann equation, provided 
t h a t  an appropriate grazing co l l i s ion  approximation i s  made and the  
same cut-off i s  used i n  the la t ter  computation. 

11 

"For example, t he  Fokker-Planck equation i t s e l f  can be obtained 
by a simple formal manipulation of t h e  Boltzmann co l l i s ion  t e r m ;  a l l  
t he  co l l i s ion  analysis  i s  c l a s s i ca l  and need not be repeated. Further- 
more, a l l  the t ransport  coef f ic ien ts  which emerge from the  Fokker- 
Planck equation ( including heat conductivity, thermal d i f fus iv i ty ,  the 
perpendicular as w e l l  as  p a r a l l e l  e l e c t r i c a l  r e s i s t i v i t y ,  a l l  evaluated 
for an a rb i t r a ry  magnetic f i e l d )  are given by w e l l  known co l l i s ion  
in t eg ra l s  evaluated f o r  t he  Boltzmann equation with coulomb po ten t i a l  
and need not be recomputed . . . 
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"To improve t h i s  r e s u l t  t o  next order . . . requires  inclusion 
of large angle def lect ions (which i s  a t r i v i a l i t y  i f  we use the  
Boltzmann ra ther  than the  Fokker-Planck equation) . . . I '  

I n  the following sections the  second-order Chapman-Enskog values of t he  
e l e c t r i c a l  and t r ans l a t iona l  thermal conductivity w i l l  be compared with 
Spi tzer ' s  values. 

The values o f  A t  calculated by the  Chapman-Enskog approach should be 
compared with Spi tzer ' s  value of the  thermal conductivity before any charge 
separation e f f ec t s  are  applied. 
be shown by a comparison of the heat f lux and current density expressions f o r  
the two approaches. The current density i s  defined as 

The equivalence of these two quant i t ies  can 

Substi tuting equation (14) i n t o  (57) and neglecting the  term containing 
DI/mI, T T  we have the Chapman-Enskog expression f o r  t he  current densi ty  

where the K ' s  are products of thermodynamic quant i t ies ,  such as number den- 
s i t ies ,  pressure, e t c .  
i s  

The corresponding Spi tzer  expression from reference 26 

1 a T  j = - E + a -  
- 7 -  ax 

The functional dependence of the  heat f lux vector' of equation (16) can be 
expressed as 

where 

(59) 

While the funct ional  dependence of  A d  on ~ x I / ~ T ,  aXe/aT, DE, and E i s  
exp l i c i t  (eqs .  (15)  and (16)), the  DIe and D,I dependence i s  impl ic i t  i n  t he  
calculation of axI/aT and axe/aT. The corresponding Spi tzer  expression from 
reference 26 i s  

'The reac t ive  thermal conductivity i s  zero  f o r  a binary mixture of e lec-  
t rons  and ions of a s ingle  type, because of t he  absence of any chemical 
reactions.  



where the  coef f ic ien ts  i n  equations (59) and (62) a re  related t o  the  charge 
separation correction, E ,  by 

Spi tzer ' s  f i n a l  expression f o r  t he  t o t a l  thermal conductivity i s  then 

Comparing equation (58) with (59), equation (60) with (64), and noting the  
FUilciLoiiai cieyeliiieiice of e y u a i i m  (Si) siiows t h a t  -i;'ne charge separa-cion 
e f f ec t s  i n  t h e  Chapman-Enskog formulation are contained i n  the  thermal d i f fu -  
s ive component of the  thermal conductivity. 

I n  pr inciple ,  t he  Chapman-Enskog values of A t ,  7 ,  and cs should be the 
same as the  Spi tzer  values because of t he  equivalence of t he  Boltzmann, and 
Fokker-Planck equations. However, some basic differences arise i n  going from 
the  basic  equations t o  the  expressions f o r  the t ransport  coef f ic ien ts .  These 
differences a re  summarized i n  tab le  I. It can be seen t h a t  t he  Chapman-Enskog 
formulation i s  more complete i n  two respects. F i r s t ,  c lose encounters ( i . e . ,  
large-angle def lect ions)  are accounted f o r .  This i s  r e f l ec t ed  i n  the modes of 
veloci ty  description. For example, Spi tzer  uses the  concept of t he  diff'usion 
coeff ic ient ,  < vx,i>,  which i s  va l id  only for small angle deflections,  
whereas Chapman and Enskog express the  velocity i n  t e r m s  of Sonine polynomials, 
which i s  va l id  f o r  both large and s m a l l  angle def lect ions.  It i s  a l s o  
r e f l ec t ed  i n  t h e  lower l i m i t  of integrat ion f o r  t he  impact parameter. Chapman 
and Enskog use zero,  whereas both Spi tzer  and Braginskii  ( re f .  39) use the  
quantity ~ / 2 .  
The second advantage of the Chapman-Ehskog formulation i s  t h a t  t he  ion-ion 
i n t e r a ~ t i o n , ~  as w e l l  as the  e f f ec t  of t h i s  in te rac t ion  on ion-electron and 
electron-electron interact ions are a lso  accounted for .  The discussion i n  t h e  
preceding sect ion on p a r t i a l l y  ionized gases pointed out t h a t  t h e  e f f e c t  of 
heavy p a r t i c l e  diffusion could become quite important. 

duct ivi ty ,  and viscosi ty ,  7, f o r  t he  various approaches are given i n  t ab le  I. 
The Chapman-Enskog values of t he  v iscos i ty  we almost i den t i ca l  w i t h  t he  
Braginskii  values at conditions of  high A. As  the  large-angle encounters 
become more important (i. e.,  lower values of A) t he  Chapman-Ehskog values 
become s l i g h t l y  l a rge r  than the  Braginskii values. This agreement i s  not 
unexpected, since the  Sonine polynomial expansion w a s  used in  both approaches. 
The r e l a t i v e l y  la rge  difference (16 percent) at  the  smallest A 
uted t o  t he  grea te r  importance of large-angle def lect ions (impact parameters 
between 0 and bo) .  
erence 38. 

nate in te rac t ion  f o r  t h i s  coeff ic ient ,  t he  ion-ion interact ion,  w a s  neglected. 

bo, t he  impact parameter corresponding t o  a def lect ion angle of 

The values of t he  t r ans l a t iona l  thermal conductivity, A t ,  e l e c t r i c a l  con- 

may be a t t r ib-  

Koga presented a detailed discussion of this  point i n  ref-  
The Chapman-Enskog values of the e l e c t r i c a l  conductivity agree 

gSpitzer did not derive an expression fo r  t he  v iscos i ty  as the  predomi- 
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quite  well with the  Spi tzer  values, especial ly  a t  large A.  A t  the  condition 
of smallest A, the  Chapman-Enskog value i s  7 percent la rger .  Again, t h i s  
small dispar i ty  may be a t t r i bu ted  t o  large-angle def lect ions.  

This excel lent  agreement between the  Chapman-Enskog and Spitzer  values of  
The comparison f o r  the  e l ec t r i ca l  conductivity br ings up an apparent paradox. 

the  t rans la t iona l  thermal conductivity shows t h a t  t he  Chapman-Enskog values 
are lower by a f ac to r  of 3. A comparison of the  elements i n  the  Chapman- 
Enskog determinant f o r  t he  e l e c t r i c a l  conductivity (eq. ( 4 4 ) )  with those f o r  
the t rans la t iona l  thermal conductivity (eq. (33))  shows the  source of the d i s -  
pa r i ty .  The r e l a t ion  between the  two s e t s  of elements i s  given i n  equa- 
t i o n  (34). It i s  seen t h a t  t he  elements f o r  t he  t r ans l a t iona l  thermal conduc- 
t i v i t y  are proportional t o  those f o r  t he  e l e c t r i c a l  conductivity, where the  
constant of  proport ional i ty  contains the  f ac to r  JW. Consequently, i f  it 
i s  assumed tha t  the  electron-electron in te rac t ions  a re  of equal importance f o r  
the  t w o  conductivit ies,  then the electron-ion in te rac t ion  i s  100 times as 
important i n  the  t r ans l a t iona l  conductivity, and the  ion-ion in te rac t ion  i s  
10,000 t i m e s  as important. Y e t ,  t h i s  l a s t  in te rac t ion  i s  prec ise ly  the  one 
Spi tzer  ignored and the  second i s  one he incompletely described. 

It should be pointed out t h a t  both the  Chapman-Enskog and Spi tzer  
approaches are accurate t o  within a f ac to r  1/2nA (ref.  37). The uncertainty 
i s  a t t r ibu ted  t o  the  neglect of nondominant terms. Although there  have been 
several  theories  which account f o r  these nondominant terms ( r e f s .  40 t o  42), 
t he  development of  these theories  has not progressed t o  t he  point where they 
w i l l  yield numerical values f o r  the  various t ransport  coef f ic ien ts .  

Reactive and Thermal Diffusive Components of Thermal Conductivity 

The calculat ion of the last  two components of thermal conductivity, A r  
and Ad, requires two s e t s  of  var iables .  The f i r s t  s e t  can be described as 
microscopic i n  viewpoint and the  second as macroscopic. The f i r s t  s e t  con- 
s i s t s  of t he  bas ic  t ransport  coef f ic ien ts  described in  the  preceding sections.  
These coeff ic ients  are defined as the  ones prescribed only by co l l i s ion  pro- 
cesses. Although the  expressions f o r  calculat ing these coeff ic ients  a re  r e l a -  
t i v e l y  complex, at  least t h e i r  solut ion i s  presented i n  closed form. 

The second s'et of var iables  a re  the  concentration gradients f o r  the  va r i -  
ous species. Because of  t h e i r  macroscopic nature, t he  concentration gradients 
a re  affected i f  any forces ,  x(r), external  or in te rna l ,  enter  the  general 
Boltzmann equation (eq. ( 3 ) ) .  
existence of a difference i n  the  ion and electron concentration gradients 
induces a charge separation f i e l d ,  &, given by Poisson's equation 

For a p a r t i a l l y  or f u l l y  ionized gas, t he  

D . E, = [n I ( l )  - ne(1 ) l e  



10 
* where n i (  1) are the  nonequilibrium number densi t ies .  The force dependence 

means t h a t  the gradients can no longer be presented i n  closed form, as w a s  t he  
case f o r  dissociat ing gases ( r e f .  9) where no force term existed.  
coupling between the  concentration gradients and the  charge separation f i e l d  
were properly accounted f o r  i n  t h e  solution of the Boltzmann equation, the  
complexity of t he  calculat ion of A, and Ad 
increased.” 
which charge separation i s  accounted f o r  are discussed i n  t h i s  section. 

If  the  

would be s igni f icant ly  
The exis t ing  calculat ion of the gradients and the  extent t o  

An expression f o r  the reac t ive  thermal conductivity of a dissociat ing gas 
w a s  derived by Butler and Brokaw (ref. 9) .  
be used f o r  a p a r t i a l l y  ionized gas. Nevertheless, t h i s  expression i s  being 
used f o r  a p a r t i a l l y  ionized gas (refs. 1 t o  6), and i n  some cases f o r  a doubly 
ionized gas (refs. 4 and 6). 
gradients by using t w o  expressions. The f i r s t  expression i s  obtained by tak-  
ing the  gradient of both siues of t h e  expression f o r  the eyuiiYuri-uii caiistait,  

They made no claims t h a t  it could 

Butler and Brokaw solved f o r  the  concentration 

KP 

where t h e  
r e s u l t  of t he  d i f fe ren t ia t ion  i s  a r e l a t i o n  between the  concentration gradi-  
en ts  and known thermodynamic quant i t ies  

ai’s are t h e  stoichiometric coeff ic ients  for the  reaction. The 

Equation (67) i s  very general and i s  val id  f o r  p a r t i a l l y  o r  f u l l y  ionized 
gases, provided the  react ion rates are  suf f ic ien t ly  rapid ( i . e . ,  l oca l  chemi- 
c a l  equilibrium). 

The second expression states that the ne t  flux of atoms of each kind, 
e i t h e r  as free  atom or combined i n  molecules, i s  zero f o r  steady-state condi- 
t ions .  This condition can be  expressed as 

=‘The nonequilibrium number densit ies,  n i (  1) , i n  equation (65) d i f f e r  
fundamentally f r o m  t h e  equilibrium values used throughout t he  preceding por- 
t i ons  of this  paper. The values of t he  equilibrium, or zero  order, number 
dens i t i e s  d i f f e r  f r o m  t h e  nonequilibrium values by a very small amount and 
consequently could be used where the difference of 
However, t h e  equilibrium values cannot be used i n  equation (65); otherwise a 
zero value of & would result. 

1lMeador i n  a pr iva te  communication po in t s  ou t  t h a t  a rigorous develop- 
ment of the  Chapman-Enskog formulation would necess i ta te  a dependence of t he  
Sonine polynomial expansion on the  charge separation f i e l d .  

nI and ne i s  not a factor.  
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where aij i s  the integer denoting the  number of atoms of type j contained 
i n  t h e  i t h  molecule. For t he  water gas react ion H20 + CO 3 C02 + H2, the  
diffusion ve loc i t ies  a re  related as  f o l l o w s :  

~ ~ ~ o 7 & ~ o  + xH2k2 = o (H atoms) 

A t  t h i s  point Butler and Brokaw simplif ied the  expression f o r  t he  d i f fu -  
(1) The f i r s t - o r d e r  expres- s ive veloci t ies  (eqs.  (14) and ( 1 5 ) )  as follows: 

sions f o r  the multicomponent diffusion coef f ic ien ts  were used as they were 
considered su f f i c i en t ly  accurate; (2) thermal diffusion e f f ec t s  were assumed 
t o  be negligible;  and (3)  macroscopic force f i e l d s  were assumed t o  be absent. 
These three assumptions are va l id  f o r  a dissociat ing gas.  The f i n a l  expres- 
sion f o r  A r  r e s u l t s  from these s implif icat ions and the  combining of  equa- 
t i ons  (67) and (68).  The expression i s  given as 

This expression should be re-examined f o r  a p a r t i a l l y  or f u l l y  ionized 
gas. For p a r t i a l l y  ionized gases, there  a re  defects  i n  equation (70) which 
should be obvious i n  l i g h t  of the discussion i n  previous sect ions.  These 
defects  l i e  i n  the three simplifying assumptions which were made f o r  a d i s -  
sociat ing gas.  Second-order multicomponent diffusion coef f ic ien ts  should have 
been used and thermal diffusion e f f ec t s  should have been included i n  the  
expression f o r  the diffusion ve loc i t i e s .  Since the  coef f ic ien ts  D g ( 2 )  and 
DF(2) can be calculated,  they can be incorporated into the  calculat ion of 
and A d  without undue d i f f i c u l t y .  However, the  solut ion would not be i n  the  
form of a s ingle  equation, but ra ther  a s e t  of simultaneous equations. 

A r  

The greatest  defect of equation (70) i s  i t s  complete neglect of  the  
charge separation f i e l d .  To determine whether the  e f f ec t  of the  charge separa- 
a t ion  f i e l d  can be included i n  the  framework of the  Chapman-Enskog formulation, 
t he  functional dependence of the  f i e l d  w i l l  be examined i n  t h i s  and subsequent 
paragraphs. Ambipolar diffusion of charged p a r t i c l e s  due t o  inhomogeneities 
( i . e . ,  temperature or concentration gradients)  results i n  a charge separation 
f i e l d .  T h i s  phenomenon has been discussed qui te  thoroughly by A l l i s  i n  r e f e r -  
ence 43 f o r  the  case o f  a f u l l y  ionized gas.  For the  case where the  over -a l l  
dimensions o f  the  plasma are grea te r  than e i t h e r  the  Debye length or the  mean 
f r e e  path, A l l i s  makes the assumption of  proport ional i ty ,  
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which r e s u l t s  i n  the  expression f o r  the  charge separation f i e l d  

The quant i ty  De 
electron.  For a p a r t i c l e  of species i, D i  i s  defined as 

i s  the  f i e l d  free d i p o l a r  diffusion coef f ic ien t  f o r  the  

where the  co l l i s ion  frequency, vci, depends upon the p a r t i c l e  velocity,  v i .  
The quant i ty  D, 
e lec t ron  and i s  an e x p l i c i t  function of the e l e c t r i c a l  conductivity, 6, the  
co l l i s ion  frequencies 
space charge density,  (nI (1)  - ne(1 ) )e .  

ionized gas i s  known, two questions arise: F i r s t ,  what modifications must be 
made f o r  p a r t i a l l y  ionized gases. 
and (73) compatible with the  Chapman-Ehskog formulation. 
f i rs t  question i s  that the  e f f e c t s  of neutral  p a r t i c l e s  a re  automatically 
accounted f o r  if one uses the e l e c t r i c a l  conductivity (eq. (46)) and co l l i s ion  
frequencies f o r  p a r t i a l l y  ionized gases. The answer t o  the second question i s  
t h a t  equations (72) and (73) a re  not compatible because the anibipolar d i f f i -  
sion coef f ic ien ts  and the  co l l i s ion  frequencies are both veloci ty  dependent. 
As a r e s u l t ,  the  expression f o r  €& i s  also ve loc i ty  dependent. If & i s  
t o  be included i n  the  t o t a l  force,  xi, i n  the Boltzmann equation (eq. (3 ) ) ,  
then an extensive modification of the en t i re  Chapman-Enskog formulation would 
be required. Specif ical ly ,  t h i s  would necessi ta te  a dependence of the  Sonine 
polynomial expansion on the  charge separation f i e l d .  
assumption i s  made t h a t  the ambipolar diffusion coef f ic ien ts  and co l l i s ion  
frequencies a re  averaged over a l l  veloci t ies  ( i . e . ,  t he  p a r t i c l e  ve loc i ty  can 
be approximated by the  mean k ine t ic  velocity, V), then the  d i p o l a r  diffusion 
coef f ic ien t  can be expressed as 

i s  the  e f f ec t ive  ambipolar diffusion coef f ic ien t  f o r  the  

vel and vce, and, more important, a f’unction of the  

Once the funct ional  dependence of t h e  charge separation f i e l d  f o r  a f u l l y  

Second, are the  expressions i n  equations (72) 
The answer t o  the  

However, if the  gross 

As a r e s u l t ,  t he  charge separation force  would s a t i s f y  the  requirement i n  the  
Chapman-Enskog formulation t h a t  any component of the  force  term is independent 
of posi t ion and time but not of veloci ty .  

The system of l i nea r  equations, which, i n  pr inc ip le ,  should y i e ld  solu- 
t i ons  f o r  the  concentration gradients i n  the form axA/aT, axI/aT, and axe aT, 
and the  charge separation f i e l d ,  E&, may now be wr i t ten  (eqs.  (75), (76), f 77), 
and (78)) .  These equations stem from equations (67), (68), and (72) .  Equa- 
t i o n  (78) ind ica tes  that & 
order number dens i t ies ,  n I ( l )  and n e ( l ) ,  as are the  last two components of t he  
thermal conductivity, A, and Ad. 
the  value of t he  t o t a l  thermal conductivity would not be a constant, as  i s  the  
case f o r  the t r ans l a t iona l  thermal conductivity, but  would vary i n  the  

i s  a function of the  difference i n  the f i r s t -  

Consequently, for a specif ied temperature 
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direction of the temperature (i. e.  , concentration) gradient.  This would m e a n '  
t h a t  the t o t a l  thermal conductivity would be a function of  the  temperature 
( i. e. , concentration) gradient as wel l  as the  temperature, l2 and would great ly  
increase the  complexity of t he  solut ion of  
i s  resolved, accurate predictions of the  last  two components of the  thermal 
conductivity f o r  a p a r t i a l l y  ionized gas w i l l  not be possible.  

A r  and Ad.  Unt i l  t h i s  d i f f i c u l t y  

12 It was pointed out i n  the  introduction t h a t  i n  Maecker's experiment 
( ref .  10) there  may be e i t h e r  an experimentally induced e r ro r  o r  an unpre- 
d ic ted  phenomenon, because the  experimental values of the  t o t a l  thermal con- 
ductivity a t  t h e  given temperature increase as the  a rc  current i s  increased. 
A possible cause i s  the  change i n  the  temperature gradient due t o  t he  change 
i n  a rc  current. 
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CONCLUDING REMARKS 

Existing methods f o r  calculating transport  coeff ic ients  of a p a r t i a l l y  

However, s ign i f icant  simplifications i n  the  theory w e r e  made f o r  t he  
ionized gas are based on the  Chapman-Enskog expansion of the  Boltzmann equa- 
t i on .  
case of a nonreactive mixture of monatomic gases near room temperature. 
s implif icat ions were  car r ied  over t o  the  case of dissociat ing and ionizing 
gases without j u s t i f i ca t ion .  
coef f ic ien ts  calculated by the  exis t ing methods with those calculated by the  
rigorous second-order Chapman-Enskog formulation shows r e l a t i v e l y  la rge  dis-  
p a r i t i e s  f o r  p a r t i a l l y  ionized gases. For example, the  ex is t ing  methods 
underestimated t h e  t r ans l a t iona l  thermal conductivity and ce r t a in  multicompo- 
nent diffusion coeff ic ients  by 25 t o  60 percent at high degrees of  ionization, 
and overestimated the  e l e c t r i c a l  conductivity by an order of  magnitude at low 
degrees of ionization. 
looked thermal diffusive effects. A comparison of t he  e l e c t r i c a l  conductivity 
values, calculated by the  rigorous second-order Chapman-Enskog formulation with 
experimental values, indicates  t he  va l id i ty  of t he  approach f o r  calculat ing 
the  t r ans l a t iona l  thermal conductivity, as w e l l  as the  e l e c t r i c a l  conductiv- 
i ty ,  a t  high degrees of ionization. 

These 

Comparison of the  values of t he  basic  t ransport  

I n  addition, t he  existing methods completely over- 

The thermal diffusion coeff ic ients  f o r  t he  atom, ion, and electron were 
A comparison of these coef f ic ien ts  shows t h a t  the 

calculated f o r  p a r t i a l l y  ionized argon can 

calculated i n  this paper. 
thermal diffusion e f f ec t s  can be a t t r ibu ted  almost en t i r e ly  t o  the  electron 
t e r m ,  and that the  values of 
be used f o r  other  p a r t i a l l y  ionized gases t o  a good degree of accuracy. 
a comparison of these coef f ic ien ts  and t h e  multicomponent diffusion coef f i -  
c i en t s  shows tha t  t h e  diffusive motions of the  ion and atom a re  strongly 
coupled and a r e  almost independent of the diffusive motion of t he  electron up 
t o  high degrees of ionization. T h i s  behavior can be a t t r i bu ted  t o  t h e  
extremely small mass of t he  electron. It should be pointed out t h a t  t h i s  
dominance of heavy p a r t i c l e  diffusion a l s o  would ex i s t  if the  heavier p a r t i -  
c l e s  w e r e  ions of a s ingle  type diffusing with respect t o  each other  due t o  
temperature and/or concentration gradients, o r  ions of a given charge d i f fus-  
ing with respect t o  ions of a d i f fe ren t  charge. 

DE 
Also, 

The calculat ions i n  t h i s  paper were carr ied out t o  t he  point of complete 
ionizat ion ( i .e . ,  a m i x t u r e  of equal numbers of s ingly ionized argon atoms 
and electrons) .  The values of t rans la t iona l  thermal conductivity and elec-  
t r i c a l  conductivity calculated by the  second-order Chapman-Enskog formulation 
(binary co l l i s ions)  were compared with those calculated by Spi tzer  approach 
(simultaneous co l l i s ions ) .  
compare favorably (discrepancies of less than 4 percent f o r  most cases).  
ever, t he  Chapman-Enskog values of t he  t rans la t iona l  thermal conductivity are 
lower by a f a c t o r  of three. 
Spi tzer ' s  neglect of ion-ion interact ions and t h e i r  e f fec t  on electron-ion 
interact ions,  which are more important by orders of magnitude i n  the  t r ans l a -  
t i o n a l  thermal conductivity as compared t o  the e l e c t r i c a l  conductivity. 

The two sets of e l e c t r i c a l  conductivity values 
How- 

This large dispar i ty  can be a t t r i bu ted  t o  
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I n  addition t o  accurate values of t he  bas ic  t ransport  coeff ic ients  
(microscopic viewpoint), accurate values of the  atom, ion, and electron con- 
centration gradients (macroscopic viewpoint) are needed f o r  the  calculat ion of 
the  las t  two components of  t he  thermal conductivity, A r  and Ad. Existing c a l -  
culations of the  concentration gradients u t i l i z e  approximate bas ic  t ransport  
coeff ic ients  which are i n  considerable error.  The ex is t ing  methods a l s o  neg- 
l e c t  the  charge-separation f i e ld ,  E,, which may profoundly a f f ec t  the  concen- 
t r a t i o n  gradients of ions and electrons.  
charge-separation f i e l d  has been examined. The examination indicates  t h a t  E, 
i s  a function of t he  difference i n  the  f i r s t - o r d e r  number dens i t ies  of  ions 
and electrons. Consequently, f o r  a specif ied temperature, the  value of the  
t o t a l  thermal conductivity would not be a constant, bu t  would vary i n  the  
direction of the  temperature gradient.  This would g rea t ly  increase the  com- 
p lex i ty  o f  the  solution of A r  and Ad. Unt i l  the  d i f f i c u l t y  i s  resolved, 
accurate predictions of t he  las t  two components of t he  thermal conductivity 
f o r  a pa r t i a l ly  ionized gas w i l l  not be possible.  

The funct ional  dependence of t he  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Ca l i f . ,  Sept. 17, 1964 
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TKERMODYNAMIC PROPERTIES OF PARTUVLY I O N I Z E D  ARGON 

The calculat ion of the  thermodynamic propert ies  of an equilibrium gas i s  
wel l  established. 
approximate one. 
and v i r i a l  correct ions t o  the  equation of s t a t e  have been omitted because of 
the  added complexity. 

The pa r t i cu la r  approachused i n  t h i s  paper i s  admittedly an 
Refinements such as  the  lowering of the  ionizat ion po ten t i a l  

Only the  per t inent  equations f o r  t h e  thermodynamic quant i t ies  w i l l  be 
given i n  the following section. 
asswnptions used can be found i n  references 1 and 4. A l l  thermodynamic func- 
t i ons  can be expressed i n  terms of the pa r t i t i on  f’unction. This function f o r  
a given mode of energy i s  defined as 

The development of the equations and the 

where E T  i s  the  i t h  quantum l eve l ,  and g i  i s  the  degeneracy or the  t o t a l  
number of s t a t e s  which have d i f f e ren t  in te rna l  configurations but have the  
same energy leve l .  The p a r t i t i o n  function of equation (2)  reduces GO 

3 /2 
a , = ( + )  2rcmk p (T)5’2 

f o r  t he  t r ans l a t iona l  mode ( r e f .  44). 
a r e  

The f’unctions f o r  the  various p a r t i c l e s  

2n Q ~ ( A )  = 221-1 5 T + 1.8662 + 2n[Cgiexp(-€i/kT)1 ( A 3 4  
1 

(A3b 1 + 2n $(A ) = g2n T + 1.8662 + In[?g.exp(-~j /kT)]  
J J  

2n $(e-) = 22n 5 T + 14.234 ( A 3 4  

The atomic energy l eve l s  and the f i rs t  ionization poten t ia l ,  as derived from 
spectroscopic analyses, a r e  taken from reference 45. 
a r b i t r a r i l y  taken where the  outer electron energy i n i t i a l l y  reaches the 
excited s t a t e  corresponding t o  the f i f t h  pr inciple  quantum number (ref. 4 6 ) .  

The cutoff terms a re  

The equilibrium constant i s  the bas i s  f o r  the  determination of t he  equi- 
The pressure equilibrium con- l ibrium mol f r ac t ions  

s t an t  f o r  s ing le  ionizat ion expressed i n  terms of t h e  p a r t i t i o n  f’unctions i s  
x(A), x(A+) , and x(e-) . 
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E 1  + 
In Kp = - E + 2n Qp(A ) + In  Qp(e-) - 2n Qp(A) 

where the ionizat ion poten t ia l ,  EI/k, has the  value 182,850' K (ref .  45). 

Thermodynamic functions determined separately f o r  each of  the  species 
A, A', and e- 
responding derivatives t o  y i e ld  the  thermodynamic propert ies  of the  equi l ib  - 
rium mixture. Generally, i n  engineering calculat ions the  energy per  f ixed  
mass of  gas  i s  needed ra ther  than the  energy per mol. This quantity can be 
obtained by multiplying 
mols per mol of i n i t i a l l y  neut ra l  argon (i. e . ,  a f ixed  mass of  39.944 grams) . 
The expression f o r  the  dimensionless energy i s  given as 

are combined with the  equilibrium mol f rac t ions  and t h e i r  cor- 

E/RT, the  energy per mol, by Z, the  t o t a l  number of 

- m = Z I X i  E i  
RT 

i 

where E i  i s  the energy per  mol f o r  component i. The dimensionless enthalpy 
per i n i t i a l  mol o f  argon becomes 

- = - + z  m m  
RT RT 

The compressibility, Z, dimensionless energy, ZE/RT, and dimensionless 
enthalpy, ZH/RT, which have been calculated f rom the  preceding equations, a re  
shown i n  figures 14, 15, and 16. 
obtained from the separate entropies of the various species by t h e  summation 

The entropy per i n i t i a l  mol of argon i s  

i i 

where po 
1 atmosphere, and S i o / R  i s  the  entropy of component i at  1 atmosphere. 
The entropy values are shown i n  figure 1.7. 

i s  t h e  reference pressure of t he  standard s t a t e ,  i n  t h i s  case 

The spec i f ic  heat at constant density per  i n i t i a l  mol of undissociated 
nitrogen i s  given by 

where C i  i s  the  der ivat ive of energy f o r  component i, t h a t  i s ,  a E i / a T .  The 
corresponding equation f o r  t he  spec i f ic  heat a t  constant pressure i s  
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The spec i f ic  heats  calculated from equations (A8) and (Ag)  are presented i n  
figures 18 and 19. 

The speed of sound can be calculated from the  spec i f ic  heat values deter- 
mined above. 
i n  reference 1 i n  terms of variables already calculated 

The dimensionless speed-of -sound parameter, a2p/p, w a s  derived 

This dimensionless speed-of-sound parameter i s  shown i n  f igure  20 as a func- 
t i o n  of temperature. 

The calculat ion of these thermodynamic propert ies  i s  based on the  use of 
t he  idea l  gas l a w  t o  describe the  p a r t i a l  pressure f o r  each component ( i . e . ,  
atoms, ions, and e lec t rons) .  S t r i c t l y  speaking, t he  use of t h i s  l a w  implies 
t h a t  p a r t i c l e s  are vanishingly small, and tha t  intermolecular forces  are non- 
ex is ten t .  The ac tua l  existence of intermolecular forces  means some deviation 
f rom t h e  i d e a l  gas l a w .  
approximation i s  accurate t o  within 1 percent f o r  t he  range where argon exists 
i n  the  atomic form (T < 5,000° K) ,  except for small regions of pressures 
(p > lo2 a t m )  . 

It can be seen in  reference 47 t h a t  t h e  ideal gas 

A t  temperatures greater  than 5,000' K the  amount of ionized species 
becomes appreciable, and the  use of the ideal gas l a w  must be examined i n  the  
l i g h t  of  t h e  screened Coulomb poten t ia l  of equation (31).  
po ten t i a l  i n  reference 48 t o  calculate  the  contribution of e l ec t ros t a t i c  
energy t o  t he  thermodynamic propert ies  of a f u l l y  ionized gas. 
pressure correction t o  the  idea l  gas equation of s t a t e  was  found t o  be 

Duclos used t h i s  

The Debye 

2 
e 733 
3h 

np, = - - 

For t he  case of a f u l l y  ionized gas ( i . e . ,  a mixture of singly ionized 
argon atoms and electrons)  the  quantity h i s  the  Debye shielding distance as 
defined i n  equation (32) .  The f r ac t iona l  pressure correction i s  then 

- 
3(kT) 

" 'ideal 

For a given temperature the  pressure correction var ies  as the  square root  of  
t h e  electron density, n3. The correction for a p a r t i a l l y  ionized gas can be 
approximated by multiplying the  r i g h t  side of equation (A12) by the percentage 
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ionization. 
magnitude of the Coulomb force  i s  an order of mgnitude grea te r  than those for 
interact ion between 

This approximation i s  based on the  f a c t  t h a t  t he  range and 

A-A, A-A', and A-e- .  

The var ia t ion of e lectron density with temperature and pressure i s  shown 
i n  f igure  21, along with l i n e s  of constant percentage ionizat ion.  A l i n e  
representing conditions where the  quant i ty  &d/Pideal i s  equal t o  1 percent 
f o r  a f u l l y  ionized gas i s  a l so  superimposed upon f igu re  21. Above t h i s  l i n e  
the  correction i s  grea te r  than 1 percent .  It can be seen t h a t  the  shielded 
Coulonib poten t ia l  r e s u l t s  i n  less than 1 percent departure over t he  l a rges t  
pa r t  of the range covered i n  t h i s  repor t .  A t  the  point of highest  e lectron 
concentration ( T  = 30,000° K, p = lo3 a t m )  where the  ionizat ion i s  approxi- 
mately 50 percent, the  equation of state correction i s  of  t he  order of 
4 percent. 
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APPENDIX B 

SHOCK-WAVE VARIABLE3 FOR PARTIALLY IONIZED ARGON 

For a range of temperatures and pressures where i d e a l  gas behavior i s  no 
longer val id ,  the  shock-wave r e l a t ions  cannot be given ana ly t ica l ly  i n  terms 
of i n i t i a l  conditions, but must be obtainedby i t e r a t i o n .  These i t e r a t i v e  
solut ions must satisfy ce r t a in  conservation r e l a t ions  ( r e f .  49) which are 
expressed i n  terms of s t a t e  var iables  i n  front  of and behind shock waves. The 
spec i f ic  approach taken i n  t h i s  paper is outlined in the  following paragraphs. 

The solut ion f o r  the incident shock-wave quant i t ies  begins with the  spec- 
i f i c a t i o n s  of an  i n i t i a l  temperature, TI, pressure, pl, and pressure r a t i o  
across the  incident  shock, 921. The temperature behind t h e  incident shock, 
T2> i s  determined by a s ingle  i t e r a t ion .  

The i t e r a t i o n  proceeds as follows. Assumption of a T2 f o r  a given p21 
allows the  compressibil i ty 
methods described e a r l i e r .  These quant i t ies  a re  then used t o  express the  
enthalpy r a t i o  and density r a t i o  across the incident  shock 

Z2 and enthalpy Z2H2/RT2 t o  be  calculated by the  

I t e r a t i o n  on T2 w i l l  lead t o  the  proper choice of T2 such t h a t  the  r e s u l t -  
ing s t a t e  var iables  and enthalpy w i l l  s a t i s fy  the  bas ic  shock r e l a t i o n  

where the  quant i ty  

I The der ivat ion of the bas ic  shock r e l a t ion  can be found on page 21 of 
reference 49. 

The bas ic  shock r e l a t i o n  a l so  w i l l  be used f o r  the  solution of the 
r e f l ec t ed  shock wave i n  the  form 



The solution of the r e f l ec t ed  shock wave w i l l  require  an addi t ional  r e l a t ion  - 
f o r  a double i te ra t ion ,  as ne i ther  p3 nor T 3  can be specif ied i n i t i a l l y .  
This re la t ion  can be derived from an expression on page 22 of  reference 49, 
as follows 

where v2 i s  the veloci ty  of the  gas behind the  shock wave r e l a t i v e  t o  a 
stationary reference system (e .g . ,  shock-tube w a l l ) ,  and the  u f  s a re  the  
veloci t ies  with reference t o  the  incident shock wave. The fo rm of t he  equa- 
t i o n  i s  also val id  f o r  the  re f lec ted  shock. 

where the w ' s  a re  the  ve loc i t ies  r e l a t i v e  t o  the  re f lec ted  shock wave. The 
boundary conditions require t h a t  

2 2 
(w2 - w3)  = (ul - u2) 

and the  s t a t e  variables behind incident and re f lec ted  shocks may be r e l a t ed  
by combining equations (B6) and (B7) 

This re la t ion  plus the  basic  shock r e l a t ion  (eq.  (B5)) must be simultaneously 
sa t i s f i ed  by the  s t a t e  var iables  and enthalpies.  

The i n i t i a l  s tep  i n  the double i t e r a t i o n  i s  t o  assume a value of p3 
and i t e r a t e  on T3, u n t i l  the  basic  shock-wave equation (eq.  ( B 5 ) )  i s  satis-  
f i ed .  h32, P32, and h2P2/p2, required f o r  t h i s  f i r s t  i t e r a -  
t ion,  can be determined f rom equations ( B l )  , (B2), and (B4) by replacing the 
subscript 1 by 2, and the  subscript  2 by 3 .  The resu l t ing  T 3  i s  not neces- 
s a r i l y  the correct T 3  f o r  the  problem, but  j u s t  the  T 3  which should cor- 
respond t o  the assumed p,. 
previously calculated f o r  T 2  and p2, and the  state var iables  f o r  the  T3 and 
p3 
equation (B10). 
must be assumed and the  above process repeated i n  i t s  en t i r e ty .  

The quant i t ies  

The next s tep  i s  t o  take the s t a t e  variables 

which s a t i s f y  equation (B5), and apply them t o  ca lcu la te  both s ides  of 
If equation (B10) i s  not s a t i s f i ed ,  then a new value of p3 

The i t e r a t i v e  solutions f o r  the pressure, density, temperature, and 
enthalpy a re  presented i n  f igure  22 f o r  t he  incident shock and f igure 23 f o r  
t he  ref lected shock. The solutions a re  given f o r  an i n i t i a l  temperature of 
293' K and f i v e  i n i t i a l  pressures varying f r o m  1 t o  atmosphere. The 



degree of ionization, 
i n  f igu res  22 and 23. 
i s  more convenient t o  

i n  the  form of the  compressibility, Z, i s  also presented 
Rather than using pZ1 as  the  independent variable,  it 

use the  shock-wave Mach number Ms, which i s  more e a s i l y  
determined i n  a shock tube experiment. 
of t h e  incident shock wave divided by the  speed of sound i n  undisturbed argon, 
and i s  r e l a t ed  t o  t he  pressure r a t i o  pB1 by 

This quantity i s  defined as the  speed 

where y 
conditions assumed i n  t h i s  paper. The s t a t e  variables are presented as the  
r a t i o  of the  calculated real-gas variable t o  t h a t  f o r  the  idea l  gas (super- 
scr ipt*j .  This dimensionless form w a s  chosen t o  maintain the  same degree of 
accuracy on the  graphs throughout the  range of shock-wave Mach numbers. 
t ha t  t he  displacements of t he  curves are about proportional t o  the logarithm 
of t he  i n i t i a l  pressure 
curves with reasonable accuracy. 
behind incident and re f lec ted  shocks are  

i s  the  r a t i o  of specif ic  heats, and i s  equal t o  5/3 f o r  the i n i t i a l  

Note 

pl, so it i s  possible t o  in te rpola te  between the  
The expressions f o r  the idea l  gas var iables  

Inc i den t Shock 

2YM2 - ( 7  - 1) 
Y + 1  

* 
p21 = 

(7  + 1)M2 
PZ1 = 

(7  - l)? + 2 

* * $1 
T21  = h2l = 7 

p2 1 

Reflected Shock 

C I  

(Bl2a) 

(B12b) 

(B12c) 



where 

Y + 1  
Y - 1  

a=- 
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SECOND - 

APPENDIX c 

RDER EXPRESSIONS FOR VISCOSITY AND MULTICOMPONENT 

DIFmJSION COEFFICIENTS 

The mathematical formalism required f o r  the second-order v i scos i ty  and 
multicomponent diffusion coef f ic ien ts  i s  described i n  detai l  i n  reference 8. 
Unfortunately, no e x p l i c i t  expressions for  t he  second-order values of 7 and 
D i e  
r a i e  for a neut ra l  gas. 
~ ( 2 )  and D i ~ ( 2 )  i s  given i n  t h i s  appendix. 
var iables  w i l l  not be discussed, as they can be found i n  reference 8. 

are given since the  f i r s t -order  values were considered su f f i c i en t ly  accu- 
Consequently, a brief ou t l ine  of t he  derivation of 

The physical connotations of t h e  

The Sonine expansion Coefficients, i n  turn, are the  solutions of a set of 
l i nea r  equations, with the  GE and B i j  (as defined i n  eqs. (35) t o  (38) and 
(42) ) as constant coeff ic ients .  

00 

These equations are 

(h,k) where $09 1J  
f o r  both t h e  v iscos i ty  and multicomponent diffusion coef f ic ien ts  i s  defined as 

i s  replaced by B:: when m = 0 and m' = 0. The variable Rim 

where the  term inside the parenthesis denotes the t r ace  of the tensor product 

defined as 
i s  (h, k )  and & f o r  the viscosi ty  coeff ic ient .  The tensor (h, k)  

of 

and the  tensor  l4i i s  defined as 

( X i ) v i s c o s i t y  = W . W .  -1-1 - -w.u 3 1 2  (c5) 
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The Maxwellian dis t r ibut ion,  foi, i s  given i n  equation ( 2 ) .  
veloci ty  xi i s  defined as 

The reduced 

The quantity Kiwi i s  the dyadic and V_ i s  the  u n i t  tensor.  The Sonine poly- 
nomial of order n = 5/2 i s  required for the  v iscos i ty  coef f ic ien t .  This 
par t icu lar  polynomial s a t i s f i e s  t he  orthogonality r e l a t ion  

Combining equations ( C 3 ) ,  ( C 4 ) ,  and ( C 5 )  we have 

The integrat ion can be performed through the  use of spherical  

dxi = V2 s i n  cp de dcp dV 

Combining equations ( C 7 ) ,  ( C 8 )  , and (Cg) we have 

coordinates 

( C 9 )  

(m = 0) ( c ~ o )  

(m = 1) (~11) 

Combining equation (C2) with (C10) and ((211) we have a s e t  of six simultane- 
ous equations 

f o r  ( m  = 0; i = 1,2,3) ( ~ 1 2 )  

for (m = 1; i = 1,2,3) (c13) 
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Y 

-01 -10 -11 where the  quant i t ies  a”,, $53, Qij ,  and Qij  

(36), (37), and (38). 
ous equations (eqs. (C12) and ((213)) resu l t s  i n  the determinant expression, 
equation (41) . 

are  defined i n  equations (42), 
The application of Cramer’s r u l e  t o  the  six simultane- 

The second-order multicomponent diffusion coef f ic ien ts  are derived i n  the  
same manner and are expressed i n  terms of the Sonine expansion coef f ic ien ts  as 

( j , i )  are I n  this case, t he  s e t  of l i nea r  equations f o r  c i o  

i s  defined as 
(h, k)  For t h e  multicomponent diffusion coeff ic ients  the  tensor Hi 

and the  tensor & is  defined as 

The Sonine polynomial of order 
diffusion coeff ic ients .  
i t y  r e l a t i o n  

n = 3/2 i s  required for t h e  multicomponent 
This pa r t i cu la r  polynomial s a t i s f i e s  t he  orthogonal- 

Combining equations ( C 3 ) ,  (c16), and ( C l 7 )  we have 

i 
i Combining equations (C9), (c18), and (Clg), we have 
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Combining equation ( C 1 4 )  with (C20) and (C21) we have a set of s i x  simultane- 
ous equations 

(m = 0; i = 1,2,3) ( ~ 2 2 )  

(m = 1; i = 1,2,3) (c23) 

00 01 10 11 
where the  quant i t ies  

t o  (38) .  The application of Cramer's ru l e  t o  t he  s i x  simultaneous equations 
(eqs.  (C22) and ( 0 3 ) )  r e s u l t s  i n  the  determinant expression, equation (44 ) .  

Q i j ,  gig,  &i j ,  and Q ~ J  a re  defined i n  equations (35) 
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Figure 3.- Translational thermal conductivity of argon as a function of 
temperature. 



0 25 x 
E m e 20 
s 
L .- 
u) 
0 
0 
u) 

> -- 
15 

10 

5 

0 5 IO 15 20 25 30 x IO” 

Temperature, T, g< 

Figure 4.- Viscosity coefficient of argon as a function of temperature. 

71 



o! 

In 
- b  
o! 

-o! c 
0 

-In 

_ -  

-0 c 
0 - 
0 a 
v, 

L 
a, z 
-0 c 
E 
W 
v, 

L a 

0 
'2 

c! 
ii 

c 

L 
W 

0 
E 
c 

L 
v) 

ii 
a - a Q, nZ n o  

E 
c 
0 

I1 

Q. 

ro 
0 



-8: 

In 
- b  
o! 

-In 

P- o 

I 
I I  

rr) 

0 

73 





75 



E 

0 
0 
a 

t 
0 

I1 

= 



E 
0 

Y 
0 
\ 

Q) 
P 
L 

c 
x 

s 
t .- > 
0 
3 
0 c 
0 
0 

.- 
t 

1.4 lo5 

I .2 

I .o 

.8 

.6 

.4 

.2 

I 
.01 

I I 1 1 1 1  I I I 
.I -5 .9 
Fraction ionized 

I 
.99 

Second-order approximation 

---- 'I I I 'I approximation 

-- 'I I I I' approximation t 
Hansen cross sections 

1 

p = IO-'atm / 

// 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

I C 
5 IO 

Temperature, T, O K  

(a) p = a t m  

Figure 7. - Comparison of second-order method with "11" and Hansen approximations 

77 

f o r  calculat ing the  t rans la t iona l  thermal conductivity. 



0 
W 
v) 

E 
0 
Y 
0 
\ 

W 
P 

2 
G 

.. 

t .- 
> 
0 
3 
U c 
0 u 

0 

L 
W 

.- 
t 

- 
E 

f 
- 
0 c 
0 

0 
u) c 

.- 
t - 
12 
I- 

5 lo5 

4 

3 

2 

I 

I I I I I I I I I  I 
.01 . I  .5 .9 

Fraction ionized 

I 
.99 

/ 

/ 
Second - order approximation / 

/ __--- ''I I "  approximation 

-- "I 1 "  approximation theory 
t Hansen cross sections / 

/ 

p = IO-' atm 

/ 
/ 

1 I I 2 

IO 15 

Temperature, T, O K  

20 25 x IO" 

(b )  p = 10-1 atm 

Figure 7 .  - Continued. 

78 



2.2x1oE 

2.0 

1.8 
V 

8 

y 1.6 

P 

5 
0 
\ 

- 
- 1.4 x 
2. 

> 

0 

u 

0 

0 

c .- 
.- 
c 

c 1.2 

- 
E 
f 1.0 
- 
0 c 0 

0 

.- 
c - .e 
z 

I- 

.6 

A 

.2 

0 
20 25 30 35 40 45 5 10 15 

Temperature, T, O K 

(c> p = lo2 a t m  

Figure 7 .  - Concluded. 

79 



\ 
\ 
\ 
\ 
\ 

\ 
\ 

\ 
\ 

E + 
0 

t 
G 

rn 
0 
X 

Ln 

Y 

I-- d 

80 



\ 
I 

81 



Q) E 
t 
0 

II 

Q 

- 

rc) 

0 

a, 

P 
cd 
k 
a, 
Pi 

P 

3 

% 
k 
0 

. r i  
+J 

3 
4-1 

cd 
m 
cd 

2 

k 
0 
k 

82 



- - 1 1 1 1 I I  I I 



' O l  

IO 

I 

I 0- 

I I I I 
Froction ionized .0001 .001 .o I .05 

/ 
/ 

I I 
/ t 

/ 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
' 0  I 
I 
I 

0 
9 

I I 

.I .25 

--- Lin,et  a l  (rt 
Chapman-En 
second order 

Temperature behind incident shock, T2, O K  

Figure 11.- Comparison of experimental and theoretical electrical conductivities 
for argon. 

84 



. 

+ 
I 
a 
a 

a 
a 

I 

'a 

a 
I 

'a 

?-a 
I 

0 '0 0 ti * 

0 4 0  

0 

rn 

.rl 
iJ 
V 
a, rn 
rn 
rn 
0 

8 
x 
iJ 
-rl rn 
0 
V rn 

n 
cd 

W 

85 



% 
a 
I 

I 
aJ 
I + a 

86 

a 
0 
Q 

c 

.c 
0 
u) aJ .- 
5 
P 
0 

a 
0 
Q 

.- 
c 

5 
)I 
I 

o a n  C 
L 
L 
aJ 
3 
0 a 
aJ 
v) 

0, > 
C 

L 

- 

I 



3x1$ 

u 
Q) 
In 

E 
0 
\ s 
6 
s c .- 
In 
0 
0 
In .- > 

2.: 

c: 

1.5 

I 

.5 

C 

- 
I I I 1 1 1 1 1 I  I I 

.01 .I .5 .9 .99 

Fraction ionized 

Second - order approximation and 
f irst-order approxima tion 

Hansen cross sections 
-- First -order approximat ion t 

IO I5 x 

Temperature, T, O K  

(a) p = io-* atm 

lo3 

Figure 13.- Comparison of methods for calculating the viscosity. 



-3 
3x IO 

2.5 

2 

1.5 

I 

.5 

0 

- 
I I 

.01 .I 
l l l l l l  I I 

Fraction ionized 

.5 .9 .99 

Second-order approximation and 
first -order approximation 
First -order approximation t 
Hansen cross-sections 

-- 

p = IO-' atm 

I I I 
5 IO 15 20 

Temperature, T, O K  

(b) p = 10-1 atm 

Figure 13. - Continued. 

88 



m 
- b  -0 o ! g  

In 
-o! 

- o !  

- c q  

-0 
- r o w  

- 
- 0  

* 
0 
L” 
X 

\ 
\ 
\ 
\ 
\ 
\ 

+ 

E 
4- 
O 

N 
0 

I1 

a 

rr, 
0 

- 
0 

Y 
0 

I-- 

E 

e 
a 

I- 

- 
=I + 

a 

: 



rr) 
0 
X 

0 cu 

cr, 

90 

Y 

I-- 

k 
0 

cd 

d 
m 

k 
0 

x 
-P 



w 
N 

0 5 10 15 20 

Temperature, T, OK 

25 

Figure 15. - Energy of argon as  a function of temperature. 

30 x IO” 



I- 

I 
N 

F 

Figure 16. - Enthalpy of argon as a function of temperature. 

X 



. 

70 

60 

50 

v) 
N 

v) 
v) 
Q) 

C 

v) 
C 

- 
.o 30 

a E 

20 

10 

0 5 IO 15 20 25 30 

Temperature, T, OK 

lo3 

Figure 17. - Entropy of argon as a function of temperature. 

93 



LT 
\ 

0 
N 

2; 

> 

c .- 
m c 
W 
-0 

c c 
0 
m c 
0 
0 

0 

0 
W r 
V 
!e 
0 
W 

t 

c 

c 

._ 

s 
ul m 
W 
c 
0 
m c 
W 

- 
._ 

E 
a .- 

Temperature, T, O K  

(a) Even powers of pressure. 

Figure 18. - Specific heat of argon at constant density as a function of 
temperature. 

X lo3 

94 



F 
> 
0 
N 

s; c .- 
In 
t 
W 
-0 

c 
S 
0 
In 
S 

c 

8 
t 
0 

c 
0 
W r 

0 5 10 15 20 

Temperature, T, O K  

(b) Odd powers of pressure. 

Figure 18. - Concluded. 

25 30 x IO” 

95 



. 

0 5 10 15 20 

Temperature, T, O K  

(a) Even powers of pressure. 

25 30 lo3 

Figure 19.- Specific heat of argon at constant pressure as a function of 
temperature. 



n 
V 
N 

c 
K 
0 
in 
K 

c 

8 
c 
0 

c 
0 
W r 

in 
v) 
0, 
c 
0 
in 
K 
W 

- 
.- 

E 
n 
.- 

0 5 IO 15 20 

Temperature, T, “K 

(b) Odd powers of pressure. 

Figure 19. - Concluded. 

a 
25 30 x io” 

97 



Q 
U la 

.. 
& 
E e 
c 
Q) 

0 
Q 

-0 c 
3 
0 
v) 
I + 
0 
I 

-0 
Q) 
Q) 
Q 
v) 

Temperature, T, O K  

(a) Even powers of pressure. 

Figure 20.- Zero frequency speed-of-sound parameter of argon as a function 
of temperature. 



. 

U 

L- 
Q) 

4- 

e 
0 n 

I .7 

I .6 

I .5 

I .4 

I .3 

1.2 

1 . 1  

Temperature, T, O K  

(b) Odd powers of pressure, 

Figure 20. - Concluded. 

99 



I O2O 

IO‘* I0lE 

€ /  

m 
E 
0 

m c 
)r 

v) c 
a, 
-0 
c 

-I- .- 

2 
-I- 
0 
a, 
W 
- 

I /  I p = 1000 atm 7 

IO - +=- // 

I% correction due to 
ionic fot - 
7 

7 

/ 
/ 

0 
Temperature, T, O K  

es 0’ . 4 . 0  , 

5 30 x IO3 

Figure 21.-  Real gas correct ions i n  the equation of state. 

100 



. 

0 
.d 
-9 
cd 
k 
a, 
k 
2 
rn 
a, 
k 
PI 

Ld 
- 
W 

101 



, 

.- 6 
e c 

Shock-wave Mach number. M, 

(b) Density r a t i o .  

Figure 22. - Continued. 

102 





, 

104 

L 



.. 
ij n 
5 c 

9 
0 
3 
I 

Y 

5 

h 
0 I 

cu cu 



5 IO 15 20 

Shock-wave Mach number, M, 

(a) Pressure r a t i o .  

25 

Figure 23. - Equilibrium thermodynamic propert ies  behind re f lec ted  shock f o r  
i n i t i a l  temperature of  293' K. 

106 



b 
B 

5 c 
r 
0 

r" 

Y 
0 
0 
63 

0 
.d + 
cd 
k 

h 

P 
W 



d 
E 
2 

W > 
0 
3 
I 

0 
Ti 
-P 
cd 
k 
a, 

-P 
cd 
k 
a, 
PI 

t3 

V 

5 

El - 
W 

a 
a, 

.rl 
-P 

V 

2 
5 
I 

m cu 

108 



0 
.ti 
u 
id 
k 

B 
rl 

k w 
a 
W 

I 

rr) cu 



k 
0 

u 
'0 
cd 
k 
tk 
n 
a, 

W 

I 

M cu 

110 NASA-Langley, 1965 A-761 


